21 research outputs found

    Genomic Identification of CCCH-Type Zinc Finger Protein Genes Reveals the Role of <i>HuTZF3</i> in Tolerance of Heat and Salt Stress of Pitaya (<i>Hylocereus polyrhizus</i>)

    No full text
    Pitaya (Hylocereus polyrhizus) is cultivated in a broad ecological range, due to its tolerance to drought, heat, and poor soil. The zinc finger proteins regulate gene expression at the transcriptional and post-transcriptional levels, by interacting with DNA, RNA, and proteins, to play roles in plant growth and development, and stress response. Here, a total of 81 CCCH-type zinc finger protein genes were identified from the pitaya genome. Transcriptomic analysis showed that nine of them, including HuTZF3, responded to both salt and heat stress. RT-qPCR results showed that HuTZF3 is expressed in all tested organs of pitaya, with a high level in the roots and stems, and confirmed that expression of HuTZF3 is induced by salt and heat stress. Subcellular localization showed that HuTZF3 is targeted in the processing bodies (PBs) and stress granules (SGs). Heterologous expression of HuTZF3 could improve both salt and heat tolerance in Arabidopsis, reduce oxidative stress, and improve the activity of catalase and peroxidase. Therefore, HuTZF3 may be involved in post-transcriptional regulation via localizing to PBs and SGs, contributing to both salt and heat tolerance in pitaya

    Lipid emulsion mitigates impaired pulmonary function induced by limb ischemia/reperfusion in rats through attenuation of local cellular injury and the subsequent systemic inflammatory

    No full text
    Abstract Background Limb ischemia/reperfusion causes inflammation and elicits oxidative stress that may lead to local tissue damage and remote organ such as lung injury. This study investigates pulmonary function after limb ischemia/reperfusion and the protective effect of a lipid emulsion (Intralipid). Methods Twenty-four rats were divided into three groups: sham operation group (group S), ischemia/reperfusion group (group IR), and lipid emulsion treatment group (group LE). limb ischemia/reperfusion was induced through occlusion of the infrarenal abdominal aorta for 3 h. The microvascular clamp was removed carefully and reperfusion was provided for 3 h. Results The mean arterial pressure in group LE was higher than group IR during the reperfusion period (P = 0.024). The heart rate of both group LE and IR are significantly higher than group S during the ischemia period(P < 0.001, P < 0.001, respectively). The arterial oxygen pressure of group LE was significantly higher than group IR (P = 0.003), the arterial carbon dioxide pressure of group LE were lower than that of group IR (P = 0.005). The concentration of plasma interleukin-6, tumor necrosis factor-α and malondialdehyde in group LE were significantly lower than group IR (P < 0.001, P = 0.009 and 0.029, respectively). The plasma superoxide dismutase activity in group LE was significantly higher than group IR (P = 0.029). The myeloperoxidase activity in lung tissues of group LE was significantly less than group IR (P = 0.046). Both muscle and lung in group IR were damaged seriously, whereas lipid emulsion (Intralipid) effectively reversed the damage. In summary, Intralipid administration resulted in several beneficial effects as compared to group IR, such as the pulmonary gas exchange and inflammatory. Conclusions The ischemic/reperfusion injury of limb muscles with resultant inflammatory damage to lung tissue can be mitigated by administration of a lipid emulsion (Intralipid, 20%, 5 ml/kg). The mechanisms attenuating such a physiological may be attributed to reduction of the degree of limb injury through a decrease in the release of local inflammatory mediators, a reduction of lipid peroxidation, and a blunting of the subsequent remote inflammatory response

    Transcriptome Analysis Revealing the Interaction of Abscisic Acid and Cell Wall Modifications during the Flower Opening and Closing Process of Nymphaea lotus

    No full text
    As a tropical flower, Nymphaea lotus is a typical night-blooming waterlily used in water gardening. Its petals are rich in aromatic substances that can be used to extract essential oils and as flower tea. However, the short life of the flower seriously affects the development of its cut flowers. At present, neither the mechanism behind the night-opening waterlily flower&rsquo;s opening and closing nor the difference between day-opening and night-opening waterlily flowers&rsquo; opening and closing mechanisms are clear. In this study, endogenous hormone contents of closed (CP) and open (OP) petals were measured, and transcriptome analysis of CP and OP petals was carried out to determine the signal transduction pathway and metabolic pathway that affect flower opening and closing. ABA and cell wall modification were selected as the most significant factors regulating flowering. We used qRT-PCR to identify the genes involved in the regulation of flower opening in waterlilies. Finally, by comparing the related pathways with those of the diurnal type, the obvious difference between them was found to be their hormonal regulation pathways. In conclusion, the endogenous ABA hormone may interact with the cell wall modification pathway to induce the flowering of N. lotus. Our data provide a new direction for the discovery of key factors regulating the flower opening and closing of N. lotus and provide basic theoretical guidance for future horticultural applications

    An Integrative Transcriptomic and Metabolomic Analysis of Red Pitaya (Hylocereus polyrhizus) Seedlings in Response to Heat Stress

    No full text
    Red pitaya (Hylocereus polyrhizus) is a significant functional food that is largely planted in Southeast Asia. Heat stress (HS) induced by high temperatures is likely to restrict the growth and survival of red pitaya. Although pitaya can tolerate temperatures as high as 40 °C, little is known of how it can withstand HS. In this study, the transcriptomic and metabolomic responses of red pitaya seedlings to HS were analyzed. A total of 198 transcripts (122 upregulated and 76 downregulated) were significantly differentially expressed after 24 h and 72 h of exposure to 42 °C compared with a control grown at 28 °C. We also identified 64 differentially accumulated metabolites in pitaya under HS (37 increased and 27 decreased). These differential metabolites, especially amino acids, organic acids, and sugars, are involved in metabolic pathways and the biosynthesis of amino acids. Interaction network analysis of the heat-responsive genes and metabolites suggested that similar pathways and complex response mechanisms are involved in the response of pitaya to HS. Overexpression of one of the upregulated genes (contig10820) in Arabidopsis, which is a homolog of PR-1 and named HuPR-1, significantly increased tolerance to HS. This is the first study showing that HuPR-1 plays a role in the response of pitaya to abiotic stress. These findings provide valuable insights that will aid future studies examining adaptation to HS in pitaya

    The influence of sintering process on thermal properties of nano-silver paste

    No full text
    Nano-silver paste with low sintering temperature and high operation temperature was introduced to the application of bonding materials for GaN and SiC devices. Thermal properties are critical issues for die attach materials due to the heat dissipation requirements of high power devices. The influence of sintering process parameters for nano-silver paste on the thermal properties was investigated. The thermal conductivity of sintered nano-silver paste increased with the increase of sintering temperature and sintering time because of the dense structure due to high temperature and long sintering time. To improve the thermal property, Ag coated micro-SiC particles were used as an alternative to partly replace pure nano-Ag particles. The results demonstrate that the SiC particles can reduce the voids and improve the density of the sintered silver structure. Moreover, the addition of SiC particles can also contribute to the increase of thermal diffusivity. As a result, the thermal conductivity of sintered silver paste with 1.5 wt.% Ag coated SiC particles was two times as compared to that without SiC particles with the same Ag concentration

    Tanshinone IIA Protects against Acute Pancreatitis in Mice by Inhibiting Oxidative Stress via the Nrf2/ROS Pathway

    No full text
    Background. Danshen (Salvia miltiorrhiza Bunge) and its main active component Tanshinone IIA (TSA) are clinically used in China. However, the effects of TSA on acute pancreatitis (AP) and its potential mechanism have not been investigated. In this study, our objective was to investigate the protective effects of TSA against AP via three classic mouse models. Methods. Mouse models of AP were established by caerulein, sodium taurocholate, and L-arginine, separately. Pancreatic and pulmonary histopathological characteristics and serum amylase and lipase levels were evaluated, and changes in oxidative stress injury and the ultrastructure of acinar cells were observed. The reactive oxygen species (ROS) inhibitor N-Acetylcysteine (NAC) and nuclear factor erythroid 2-related factor 2 (Nrf2) knockout mice were applied to clarify the protective mechanism of the drug. Results. In the caerulein-induced AP model, TSA administration reduced serum amylase and lipase levels and ameliorated the histopathological manifestations of AP in pancreatic tissue. Additionally, TSA appreciably decreased ROS release, protected the structures of mitochondria and the endoplasmic reticulum, and increased the protein expression of Nrf2 and heme oxygenase 1 of pancreatic tissue. In addition, the protective effects of TSA against AP were counteracted by blocking the oxidative stress (NAC administration and Nrf2 knockout in mice). Furthermore, we found that TSA protects pancreatic tissue from damage and pancreatitis-associated lung injury in two additional mouse models induced by sodium taurocholate and by L-arginine. Conclusion. Our data confirmed the protective effects of TSA against AP in mice by inhibiting oxidative stress via the Nrf2/ROS pathway

    Quantitative proteomics reveals TMOD1-related proteins associated with water balance regulation.

    No full text
    The distal tubule and collecting duct in kidney regulate water homeostasis. TMOD1 is an actin capping protein that plays an important role in controlling the organization of actin filaments. In this study, we found TMOD1 was specifically expressed in distal tubules and collecting ducts. To investigate the role of TMOD1, we created Tmod1flox/flox mice and bred them with Ksp-Cre mice to generate tubule-specific Tmod1 knockout mice, Tmod1flox/flox/Ksp-Cre+ (designated as TFK). As compared with control mice, TFK mice showed oliguria, hyperosmolality urine, and high blood pressure. To determine the mechanisms underlying this phenotype, we performed label-free quantitative proteomics on kidneys of TFK and control mice. Total of 83 proteins were found differentially expressed. Bioinformatic analysis indicated that biological processes, including protein phosphorylation and metabolic process, were involved in TMOD1 regulatory network. Gene set enrichment analysis showed that multiple pathways, such as phosphatidylinositol signaling system and GnRH signaling pathway, were strongly associated with Tmod1 knockout. Western blot validated the down-regulation of three proteins, TGFBR2, SLC25A11, and MTFP1, in kidneys of TFK mice. Our study provides valuable information on the molecular functions and the regulatory network of Tmod1 gene in kidney, as well as the new mechanisms for the regulation of water balance
    corecore