2,025 research outputs found

    Why surface nanobubbles live for hours

    Get PDF
    We present a theoretical model for the experimentally found but counter-intuitive exceptionally long lifetime of surface nanobubbles. We can explain why, under normal experimental conditions, surface nanobubbles are stable for many hours or even up to days rather than the expected microseconds. The limited gas diffusion through the water in the far field, the cooperative effect of nanobubble clusters, and the pinned contact line of the nanobubbles lead to the slow dissolution rate.Comment: 5 pages, 3 figure

    Capillarity of soft amorphous solids: a microscopic model for surface stress

    Get PDF
    The elastic deformation of a soft solid induced by capillary forces crucially relies on the excess stress inside the solid-liquid interface. While for a liquid-liquid interface this "surface stress" is strictly identical to the "surface free energy", the thermodynamic Shuttleworth equation implies that this is no longer the case when one of the phases is elastic. Here we develop a microscopic model that incorporates enthalpic interactions and entropic elasticity, based on which we explicitly compute the surface stress and surface free energy. It is found that the compressibility of the interfacial region, through the Poisson ratio near the interface, determines the difference between surface stress and surface energy. We highlight the consequence of this finding by comparing with recent experiments and simulations on partially wetted soft substrates

    Emergent hyperuniformity in periodically-driven emulsions

    Full text link
    We report the emergence of large-scale hyperuniformity in microfluidic emulsions. Upon periodic driving confined emulsions undergo a first-order transition from a reversible to an irreversible dynamics. We evidence that this dynamical transition is accompanied by structural changes at all scales yielding macroscopic yet finite hyperuniform structures. Numerical simulations are performed to single out the very ingredients responsible for the suppression of density fluctuations. We show that as opposed to equilibrium systems the long-range nature of the hydrodynamic interactions are not required for the formation of hyperuniform patterns, thereby suggesting a robust relation between reversibility and hyperuniformity which should hold in a broad class of periodically driven materials.Comment: 5p, 3f, submitte

    Revising spaces of enclosure

    Get PDF

    Initial spreading of low-viscosity drops on partially wetting surfaces

    Get PDF
    Liquid drops start spreading directly after brought into contact with a partial wetting substrate. Although this phenomenon involves a three-phase contact line, the spreading motion is very fast. We study the initial spreading dynamics of low-viscosity drops, using two complementary methods: Molecular Dynamics simulations and high-speed imaging. We access previously unexplored length- and time-scales, and provide a detailed picture on how the initial contact between the liquid drop and the solid is established. Both methods unambiguously point towards a spreading regime that is independent of wettability, with the contact radius growing as the square root of time
    corecore