29 research outputs found

    Patch-level based vegetation change and environmental drivers in Tarim River drainage area of West China

    Get PDF
    Information on vegetation-related land cover change and the principle drivers is critical for environmental management and assessment of desertification processes in arid environments. In this study, we investigated patch-level based changes in vegetation and other major land cover types in lower Tarim River drainage area in Xinjiang, West China, and examined the impacts of environmental factors on those changes. Patterns of land cover change were analyzed for the time sequence of 1987-1999-2004 based on satellite-derived land classification maps, and their relationships with environmental factors were determined using Redundancy Analysis (RDA). Environmental variables used in the analysis included altitude, slope, aspect, patch shape index (fractal dimension), patch area, distance to water body, distance to settlements, and distance to main roads. We found that during the study period, 26% of the land experienced cover changes, much of which were the types from the natural riparian and upland vegetation to other land covers. The natural riparian and upland vegetation patches were transformed mostly to desert and some to farmlands, indicating expanding desertification processes of the region. A significant fraction of the natural riparian and upland vegetation experienced a phase of alkalinity before becoming desert, suggesting that drought is not the exclusive environmental driver of desertification in the study area. Overall, only a small proportion of the variance in vegetation-related land cover change is explainable by environmental variables included in this study, especially during 1987-1999, indicating that patch-level based vegetation change in this region is partly attributable to environmental perturbations. The apparent transformation from the natural riparian and upland vegetation to desert indicates an on-going process of desertification in the region

    Investigation on Wire Electrochemical Discharge Micro-Machining

    No full text
    With the development of MEMS, the machining demand and requirements for difficult-to-machine metal micro parts are getting higher. Microelectric discharge machining is an effective method to process difficult-to-machine metals. However, the recast layer caused by high temperatures in microelectric discharge machining affects the properties of machined materials. Here, we propose the wire electrochemical discharge micro-machining (WECDMM) and develop a new electrolyte system, which removes the recast layer. In this study, the mechanism of WECDMM was elucidated. The electrolyte was optimized through a comparison experiment, and NaNO3-glycol solution was determined as the best electrolyte. The influences of key process parameters including the conductivity of the electrolyte, pulse voltage, pulse-on time and wire feed rate were analyzed on the slit width, standard deviation, the radius of fillet at the entrance of the slit and roughness. Typical microstructures were machined, which verified the machining ability of WECDMM

    Bloch-Surface-Polariton-Based Hybrid Nanowire Structure for Subwavelength, Low-Loss Waveguiding

    No full text
    Surface plasmon polaritons (SPPs) have been thoroughly studied in the past decades for not only sensing but also waveguiding applications. Various plasmonic device structures have been explored due to their ability to confine their optical mode to the subwavelength level. However, with the existence of metal, the large ohmic loss limits the propagation distance of the SPP and thus the scalability of such devices. Therefore, different hybrid waveguides have been proposed to overcome this shortcoming. Through fine tuning of the coupling between the SPP and a conventional waveguide mode, a hybrid mode could be excited with decent mode confinement and extended propagation distance. As an effective alternative of SPP, Bloch surface waves have been re-investigated more recently for their unique advantages. As is supported in all-dielectric structures, the optical loss for the Bloch surface wave is much lower, which stands for a much longer propagating distance. Yet, the confinement of the Bloch surface wave due to the reflections and refractions in the multilayer structure is not as tight as that of the SPP. In this work, by integrating a periodic multilayer structure that supports the Bloch surface wave with a metallic nanowire structure, a hybrid Bloch surface wave polariton could be excited. With the proposed hybrid nanowire structure, a hybrid mode is demonstrated with the deep subwavelength mode confinement and a propagation distance of tens of microns

    Introduction to the Sustain H2O project

    No full text
    In the framework of the EU-China Environmental Sustainability Program, the SUSTAIN H2O project was launched in 2013 and ran over 36 months until 2016. Sustain H2O is an abbreviation which stands for “Demonstration of Pollution Discharge Management for Water Quality Improvement in the Songhuajiang-Liaohe River Basin (SLRB)”. The SLRB represents China’s old industrial base with a large number of water-polluting industries. It has been selected as it is a key river basin for water pollution control and water environment management with clearly defined challenges in terms of pollution emission reduction and water quality improvement. Some of these challenges/problems include excessive discharge of pollutants, no optimal load allocation mechanism of quantity control, poor water quality and severely damaged water ecology as well as high risk of environmental pollution accidental events that threaten the safety of drinking water sources. Moreover, the SLRB is a trans-national (transboundary) river catchment, flowing from China to Russia, and therefore is well suited as a joint Sino-EU action

    Gene Mutation Analysis in 253 Chinese Children with Unexplained Epilepsy and Intellectual/Developmental Disabilities.

    No full text
    Epilepsy and intellectual/developmental disabilities (ID/DD) have a high rate of co-occurrence. Here, we investigated gene mutations in Chinese children with unexplained epilepsy and ID/DD.We used targeted next-generation sequencing to detect mutations within 300 genes related to epilepsy and ID/DD in 253 Chinese children with unexplained epilepsy and ID/DD. A series of filtering criteria was used to find the possible pathogenic variations. Validation and parental origin analyses were performed by Sanger sequencing. We reviewed the phenotypes of patients with each mutated gene.We identified 32 novel and 16 reported mutations within 24 genes in 46 patients. The detection rate was 18% (46/253) in the whole group and 26% (17/65) in the early-onset (before three months after birth) epilepsy group. To our knowledge, we are the first to report KCNAB1 is a disease-causing gene of epilepsy by identifying a novel de novo mutation (c.1062dupCA p.Leu355HisfsTer5) within this gene in one patient with early infantile epileptic encephalopathy (EIEE). Patients with an SCN1A mutation accounted for the largest proportion, 17% (8/46). A total of 38% (9/24) of the mutated genes re-occurred at least 2 times and 63% (15/24) occurred only one time. Ion channel genes are the most common (8/24) and genes related to synapse are the next most common to occur (5/24).We have established genetic diagnosis for 46 patients of our cohort. Early-onset epilepsy had the highest detection rate. KCNAB1 mutation was first identified in EIEE patient. We expanded the phenotype and mutation spectrum of the genes we identified. The mutated genes in this cohort are mostly isolated. This suggests that epilepsy and ID/DD phenotypes occur as a consequence of brain dysfunction caused by a highly diverse population of mutated genes. Ion channel genes and genes related to synapse were more common mutated in this patient cohort
    corecore