144 research outputs found

    Naturally Small Dirac Neutrino Mass with Intermediate SU(2)LSU(2)_{L} Multiplet Fields

    Full text link
    If neutrinos are Dirac fermions, certain new physics beyond the standard model should exist to account for the smallness of neutrino mass. With two additional scalars and a heavy intermediate fermion, in this paper, we systematically study the general mechanism that can natrally generate the tiny Dirac neutrino mass at tree and in one-loop level. For tree level models, we focus on natural ones, in which the additional scalars develop small vacuum expectation values without fine-tuning. For one-loop level models, we explore those having dark matter candidates under Z2DZ_2^D symmetry. In both cases, we concentrate on SU(2)LSU(2)_L multiplet scalars no larger than quintuplet, and derive the complete sets of viable models. Phenomenologies, such as lepton flavor violation, leptogenesis, and LHC signatures are briefly discussed.Comment: 31 pages, 16 figure

    The B−LB-L Scotogenic Models for Dirac Neutrino Masses

    Full text link
    We construct the one-loop and two-loop scotogenic models for Dirac neutrino mass generation in the context of U(1)B−LU(1)_{B-L} extensions of standard model. It is indicated that the total number of intermediate fermion singlets is uniquely fixed by anomaly free condition and the new particles may have exotic B−LB-L charges so that the direct SM Yukawa mass term νˉLνRϕ0‾\bar{\nu}_L\nu_R\overline{\phi^0} and the Majorana mass term (mN/2)νRC‾νR(m_N/2)\overline{\nu_R^C}\nu_R are naturally forbidden. After the spontaneous breaking of U(1)B−LU(1)_{B-L} symmetry, the discrete Z2Z_{2} or Z3Z_{3} symmetry appears as the residual symmetry and give rise to the stability of intermediated fields as DM candidate. Phenomenological aspects of lepton flavor violation, DM, leptogenesis and LHC signatures are discussed.Comment: 18 pages, 16 figure

    3D-GPT: Procedural 3D Modeling with Large Language Models

    Full text link
    In the pursuit of efficient automated content creation, procedural generation, leveraging modifiable parameters and rule-based systems, emerges as a promising approach. Nonetheless, it could be a demanding endeavor, given its intricate nature necessitating a deep understanding of rules, algorithms, and parameters. To reduce workload, we introduce 3D-GPT, a framework utilizing large language models~(LLMs) for instruction-driven 3D modeling. 3D-GPT positions LLMs as proficient problem solvers, dissecting the procedural 3D modeling tasks into accessible segments and appointing the apt agent for each task. 3D-GPT integrates three core agents: the task dispatch agent, the conceptualization agent, and the modeling agent. They collaboratively achieve two objectives. First, it enhances concise initial scene descriptions, evolving them into detailed forms while dynamically adapting the text based on subsequent instructions. Second, it integrates procedural generation, extracting parameter values from enriched text to effortlessly interface with 3D software for asset creation. Our empirical investigations confirm that 3D-GPT not only interprets and executes instructions, delivering reliable results but also collaborates effectively with human designers. Furthermore, it seamlessly integrates with Blender, unlocking expanded manipulation possibilities. Our work highlights the potential of LLMs in 3D modeling, offering a basic framework for future advancements in scene generation and animation.Comment: Project page: https://chuny1.github.io/3DGPT/3dgpt.htm

    Enhancing malaria diagnosis through microfluidic cell enrichment and magnetic resonance relaxometry detection

    Get PDF
    Despite significant advancements over the years, there remains an urgent need for low cost diagnostic approaches that allow for rapid, reliable and sensitive detection of malaria parasites in clinical samples. Our previous work has shown that magnetic resonance relaxometry (MRR) is a potentially highly sensitive tool for malaria diagnosis. A key challenge for making MRR based malaria diagnostics suitable for clinical testing is the fact that MRR baseline fluctuation exists between individuals, making it difficult to detect low level parasitemia. To overcome this problem, it is important to establish the MRR baseline of each individual while having the ability to reliably determine any changes that are caused by the infection of malaria parasite. Here we show that an approach that combines the use of microfluidic cell enrichment with a saponin lysis before MRR detection can overcome these challenges and provide the basis for a highly sensitive and reliable diagnostic approach of malaria parasites. Importantly, as little as 0.0005% of ring stage parasites can be detected reliably, making this ideally suited for the detection of malaria parasites in peripheral blood obtained from patients. The approaches used here are envisaged to provide a new malaria diagnosis solution in the near future.Singapore-MIT Alliance for Research and Technology Cente
    • …
    corecore