6 research outputs found

    Molecular analysis of cancer genomes in children with Lynch syndrome: Exploring causal associations

    Get PDF
    Lynch syndrome (LS) predisposes to cancer in adulthood and is caused by heterozygous germline variants in a mismatch repair (MMR) gene. Recent studies show an increased prevalence of LS among children with cancer, suggesting a causal relationship. For LS-spectrum (LSS) cancers, including high-grade gliomas and colorectal cancer, causality has been supported by typical MMR-related tumor characteristics, but for non-LSS cancers, causality is unclear. We characterized 20 malignant tumors of 18 children with LS, including 16 non-LSS tumors. We investigated second hits, tumor mutational load, mutational signatures and MMR protein expression. In all LSS tumors and three non-LSS tumors, we detected MMR deficiency caused by second hit somatic alterations. Furthermore, these MMR-deficient tumors carried driver variants that likely originated as a consequence of MMR deficiency. However, in 13 non-LSS tumors (81%), a second hit and MMR deficiency were absent, thus a causal link between LS and cancer development in these children is lacking. These findings demonstrate that causality of LS in children with cancer, which can be determined by molecular tumor characterization, seems to be restricted to specific tumor types. Large molecular and epidemiological studies are needed to further refine the tumor spectrum in children with LS

    High Prevalence of Constitutional Mismatch Repair Deficiency in a Pediatric T-cell Lymphoblastic Lymphoma Cohort

    Get PDF
    This study describes the clinical characteristics of a complete Dutch T-cell lymphoblastic lymphoma (T-LBL) cohort, including second primary malignancies and comorbidities. We show that over 10% of patients in this complete T-LBL cohort have been diagnosed with a cancer predisposition syndrome (CPS), consisting almost exclusively of constitutional mismatch repair deficiency (CMMRD). The clinical characteristics of sporadic T-LBL patients were compared with T-LBL patients that have been diagnosed with CMMRD. This shows that disease presentation is comparable but that disease localization in CMMRD patients might be more localized. The percentage of CPS seems reliable considering the completeness of the cohort of Dutch T-LBL patients and might even be an underestimation (possibility of undiagnosed CPS patients in cohort). As the frequency of an underlying predisposition syndrome among T-LBL patients may be underestimated at present, we advocate for screening all pediatric T-LBL patients for the presence of germline mutations in mismatch repair genes

    Challenges of Neoantigen Targeting in Lynch Syndrome and Constitutional Mismatch Repair Deficiency Syndrome

    Get PDF
    Lynch syndrome (LS) and constitutional mismatch repair deficiency (CMMRD) are hereditary disorders characterised by a highly increased risk of cancer development. This is due to germline aberrations in the mismatch repair (MMR) genes, which results in a high mutational load in tumours of these patients, including insertions and deletions in genes bearing microsatellites. This generates microsatellite instability and cause reading frameshifts in coding regions that could lead to the generation of neoantigens and opens up avenues for neoantigen targeting immune therapies prophylactically and therapeutically. However, major obstacles need to be overcome, such as the heterogeneity in tumour formation within and between LS and CMMRD patients, which results in considerable variability in the genes targeted by mutations, hence challenging the choice of suitable neoantigens. The machine-learning methods such as NetMHC and MHCflurry that predict neoantigen- human leukocyte antigen (HLA) binding affinity provide little information on other aspects of neoantigen presentation. Immune escape mechanisms that allow MMR-deficient cells to evade surveillance combined with the resistance to immune checkpoint therapy make the neoantigen targeting regimen challenging. Studies to delineate shared neoantigen profiles across patient cohorts, precise HLA binding algorithms, additional therapies to counter immune evasion and evaluation of biomarkers that predict the response of these patients to immune checkpoint therapy are warranted

    De Novo Variants in CNOT1, a Central Component of the CCR4-NOT Complex Involved in Gene Expression and RNA and Protein Stability, Cause Neurodevelopmental Delay.

    No full text
    CNOT1 is a member of the CCR4-NOT complex, which is a master regulator, orchestrating gene expression, RNA deadenylation, and protein ubiquitination. We report on 39 individuals with heterozygous de novo CNOT1 variants, including missense, splice site, and nonsense variants, who present with a clinical spectrum of intellectual disability, motor delay, speech delay, seizures, hypotonia, and behavioral problems. To link CNOT1 dysfunction to the neurodevelopmental phenotype observed, we generated variant-specific Drosophila models, which showed learning and memory defects upon CNOT1 knockdown. Introduction of human wild-type CNOT1 was able to rescue this phenotype, whereas mutants could not or only partially, supporting our hypothesis that CNOT1 impairment results in neurodevelopmental delay. Furthermore, the genetic interaction with autism-spectrum genes, such as ASH1L, DYRK1A, MED13, and SHANK3, was impaired in our Drosophila models. Molecular characterization of CNOT1 variants revealed normal CNOT1 expression levels, with both mutant and wild-type alleles expressed at similar levels. Analysis of protein-protein interactions with other members indicated that the CCR4-NOT complex remained intact. An integrated omics approach of patient-derived genomics and transcriptomics data suggested only minimal effects on endonucleolytic nonsense-mediated mRNA decay components, suggesting that de novo CNOT1 variants are likely haploinsufficient hypomorph or neomorph, rather than dominant negative. In summary, we provide strong evidence that de novo CNOT1 variants cause neurodevelopmental delay with a wide range of additional co-morbidities. Whereas the underlying pathophysiological mechanism warrants further analysis, our data demonstrate an essential and central role of the CCR4-NOT complex in human brain development
    corecore