37 research outputs found

    Deep Technology Tracing for High-tech Companies

    Full text link
    Technological change and innovation are vitally important, especially for high-tech companies. However, factors influencing their future research and development (R&D) trends are both complicated and various, leading it a quite difficult task to make technology tracing for high-tech companies. To this end, in this paper, we develop a novel data-driven solution, i.e., Deep Technology Forecasting (DTF) framework, to automatically find the most possible technology directions customized to each high-tech company. Specially, DTF consists of three components: Potential Competitor Recognition (PCR), Collaborative Technology Recognition (CTR), and Deep Technology Tracing (DTT) neural network. For one thing, PCR and CTR aim to capture competitive relations among enterprises and collaborative relations among technologies, respectively. For another, DTT is designed for modeling dynamic interactions between companies and technologies with the above relations involved. Finally, we evaluate our DTF framework on real-world patent data, and the experimental results clearly prove that DTF can precisely help to prospect future technology emphasis of companies by exploiting hybrid factors.Comment: 6 pages, 7 figure

    Driver anomaly quantification for intelligent vehicles: a contrastive learning approach with representation clustering

    Get PDF
    Driver anomaly quantification is a fundamental capability to support human-centric driving systems of intelligent vehicles. Existing studies usually treat it as a classification task and obtain discrete levels for abnormalities. Meanwhile, the existing data-driven approaches depend on the quality of dataset and provide limited recognition capability for unknown activities. To overcome these challenges, this paper proposes a contrastive learning approach with the aim of building a model that can quantify driver anomalies with a continuous variable. In addition, a novel clustering supervised contrastive loss is proposed to optimize the distribution of the extracted representation vectors to improve the model performance. Compared with the typical contrastive loss, the proposed loss can better cluster normal representations while separating abnormal ones. The abnormality of driver activity can be quantified by calculating the distance to a set of representations of normal activities rather than being produced as the direct output of the model. The experiment results with datasets under different modes demonstrate that the proposed approach is more accurate and robust than existing ones in terms of recognition and quantification of unknown abnormal activities

    Non-Coding Transcriptome Provides Novel Insights into the Escherichia coli F17 Susceptibility of Sheep Lamb

    Get PDF
    SIMPLE SUMMARY: Diarrhea and vomiting caused by Escherichia coli (E. coli) F17 are considered significant threats to animal farming. In the present study, RNA-Seq was performed to investigate the potential circRNA and miRNA biomarkers for E. coli F17-antagonism (AN) and -sensitive (SE) lambs. The results indicated that circRNA and miRNA expression is closely associated with the susceptibility of E. coli F17 in lambs. Numbers of circRNAs and miRNAs may serve as potential biomarkers for intestinal inflammatory response against E. coli F17 infection. Our study can provide a preliminary understanding of the underlying mechanisms of intestinal immunity. ABSTRACT: It has long been recognized that enterotoxigenic Escherichia coli (ETEC) is the major pathogen responsible for vomiting and diarrhea. E. coli F17, a main subtype of ETEC, is characterized by high morbidity and mortality in young livestock. However, the transcriptomic basis underlying E. coli F17 infection has not been fully understood. In this study, RNA sequencing was performed to explore the expression profiles of circRNAs and miRNAs in the jejunum of E. coli F17-antagonism (AN) and -sensitive (SE) lambs. A total of 16,534 circRNAs and 271 miRNAs (125 novel miRNAs and 146 annotated miRNAs) were screened, and 214 differentially expressed (DE) circRNAs and 53 DE miRNAs were detected between the AN and SE lambs (i.e., novel_circ_0025840, novel_circ_0022779, novel_miR_107, miR-10b). Functional enrichment analyses showed that source genes of DE circRNAs were mainly involved in metabolic-related pathways, while target genes of DE miRNAs were mainly enriched in the immune response pathways. Then, a two-step machine learning approach combining Random Forest (RF) and XGBoost (candidates were first selected by RF and further assessed by XGBoost) was performed, which identified 44 circRNAs and 39 miRNAs as potential biomarkers (i.e., novel_circ_0000180, novel_circ_0000365, novel_miR_192, oar-miR-496-3p) for E. coli infection. Furthermore, circRNA-related and lncRNA-related ceRNA networks were constructed, containing 46 circRNA-miRNA-mRNA competing triplets and 630 lncRNA-miRNA-mRNA competing triplets, respectively. By conducting a serious of bioinformatic analyses, our results revealed important circRNAs and miRNAs that could be potentially developed as candidate biomarkers for intestinal inflammatory response against E. coli F17 infection; our study can provide novel insights into the underlying mechanisms of intestinal immunity

    Dynamic evolutions of traffic wind influenced by ambient wind for urban road tunnel with shafts

    Full text link
    Urban road tunnels with shafts have been applied in some cities in China. Field measurements of Mofan Road Tunnel show that ambient wind is widespread and its influence on the ventilation efficiency of shaft is unclear. In this paper, the physical model of a three-lane 210 m (length) *12 m (width) *6 m (height) tunnel is studied, with three vehicles in each lane and a speed of 60 km/h. Three-dimensional CFD simulations on a 210 m long tunnel with double shafts is carried out by Fluent 6.3.26. Momentum equation and k-ε equation turbulence model are used for simulation analysis and dynamic grid technology is used to simulate vehicles driving. It is found that the ambient wind in tunnel has great influence on the flow field in tunnel and shaft. Number Ri is defined as the ratio of horizontal inertia force to vertical inertia force, revealing the conversion of horizontal inertia force to vertical inertia force

    Effects of Novel Nanoparticulate Bioceramic Endodontic Material on Human Dental Pulp Stem Cells In Vitro

    Full text link
    Objectives: This study aimed to investigate the in vitro effects of root canal filling and repair paste (nRoot BP) on human dental pulp stem cells (hDPSCs). Methods: The effects of nRoot BP and iRoot BP Plus on the adhesion, proliferation, migration, and differentiation of hDPSCs were examined in vitro for 72 hours. The adhesion of cells was observed using immunofluorescence rhodamine ghost pen cyclic peptide staining and scanning electron microscopy (SEM). Cell density and changes in migration area were measured under a fluorescence inverted microscope. Fluorescent quantitative PCR was performed to detect genes related to odontogenesis and osteogenesis. Results: Cells adhering to the surfaces of nRoot BP and iRoot BP Plus exhibited similar irregular polygonal morphologies, with cells extending irregular pseudopods to adhere to the materials. CCK-8 results indicated that the density of living cells for nRoot BP and iRoot BP Plus was lower than that of the blank control group at 3 and 5 days of culture. There was no significant difference in cell migration between the groups (P > .05). The migration ability of iRoot BP Plus and nRoot BP was similar to that of the control group. Both nRoot BP and iRoot BP Plus increased the expression of the RUNX2 gene, but there was no significant difference between the groups (P .05). Conclusions: nRoot BP exhibited a slight inhibition of hDPSC proliferation but did not affect the adhesion and migration of hDPSCs. The impact of nRoot BP on the osteogenic and odontogenic differentiation of hDPSCs was similar to that of iRoot BP Plus

    Preparation of PDA-GO/CS composite scaffold and its effects on the biological properties of human dental pulp stem cells

    Full text link
    Abstract Reduced graphene oxide (rGO) is an graphene oxide (GO) derivative of graphene, which has a large specific surface area and exhibited satisfactory physicochemical characteristics. In this experiment, GO was reduced by PDA to generate PDA-GO complex, and then PDA-GO was combined with Chitosan (CS) to synthesize PDA-GO/CS composite scaffold. PDA-GO was added to CS to improve the degradation rate of CS, and it was hoped that PDA-GO/CS composite scaffolds could be used in bone tissue engineering. Physicochemical and antimicrobial properties of the different composite scaffolds were examined to find the optimal mass fraction. Besides, we examined the scaffold’s biocompatibility by Phalloidin staining and Live and Dead fluorescent staining. Finally, we applied ALP staining, RT-qPCR, and Alizarin red S staining to detect the effect of PDA-GO/CS on the osteogenic differentiation of human dental pulp stem cells (hDPSCs). The results showed that PDA-GO composite was successfully prepared and PDA-GO/CS composite scaffold was synthesized by combining PDA-GO with CS. Among them, 0.3%PDA-GO/CS scaffolds improves the antibacterial activity and hydrophilicity of CS, while reducing the degradation rate. In vitro, PDA-GO/CS has superior biocompatibility and enhances the early proliferation, migration and osteogenic differentiation of hDPSCs. In conclusion, PDA-GO/CS is a new scaffold materialsuitable for cell culture and has promising application prospect as scaffold for bone tissue engineering

    A Flexible Terahertz Metamaterial Biosensor for Cancer Cell Growth and Migration Detection

    Full text link
    Metamaterial biosensors have been extensively used to identify cell types and detect concentrations of tumor biomarkers. However, the methods for in situ and non-destruction measurement of cell migration, which plays a key role in tumor progression and metastasis, are highly desirable. Therefore, a flexible terahertz metamaterial biosensor based on parylene C substrate was proposed for label-free and non-destructive detection of breast cancer cell growth and migration. The maximum resonance peak frequency shift achieved 183.2 GHz when breast cancer cell MDA−MB−231 was cultured onto the surface of the metamaterial biosensor for 72 h. A designed polydimethylsiloxane (PDMS) barrier sheet was applied to detect the cell growth rate which was quantified as 14.9 µm/h. The experimental peak shift expressed a linear relationship with the covered area and a quadratic relationship with the distance, which was consistent with simulation results. Additionally, the cell migration indicated that the transform growth factor-β (TGF-β) promoted the cancer cell migration. The terahertz metamaterial biosensor shows great potential for the investigation of cell biology in the future

    Analysis of lncRNAs Expression Profiles in Hair Follicle of Hu Sheep Lambskin

    Full text link
    Lambskin of the Hu sheep exhibits high economic value due to its water-wave pattern. Wool curvature is the key factor of the pattern types and quality of lambskin, and it is formed by the interaction between dermal papilla cells and hair matrix cells in the hair follicle, which is regulated by various genes and signaling pathways. Herein, three full-sibling pairs of two-day-old healthy lambs (n = 6) were divided into a straight wool group (ST) and small waves group (SM) with three repetitions. RNA-seq was applied to determine the expression profile of mRNAs and lncRNAs in Hu sheep hair follicles. 25 differentially expressed mRNAs and 75 differentially expressed lncRNAs were found between SM and ST. FGF12, ATP1B4, and TCONS_00279168 were probably associated with hair follicle development. Then, Gene Ontology (GO) and KEGG enrichment analysis were implemented for the functional annotation of target genes of differentially expressed lncRNAs. The results showed that many genes, such as FGF12 and ATP1B4, were found enriched in PI3K-Akt signaling, MAPK signaling, and Ras signaling pathway associated with hair follicle growth and development. In addition, the interaction network of differentially expressed lncRNAs and mRNAs showed that a total of 6 differentially expressed lncRNAs were associated with 12 differentially expressed mRNAs, which may be as candidate mRNAs and lncRNAs. TCONS_00279168 may target ATP1B4 and FGF12 to regulate MAPK, PI3K-Akt, Ras signaling pathways involved in the sheep hair follicle development process. These results will provide the basis for exploring hair follicle development

    Smartphone Biosensor System with Multi-Testing Unit Based on Localized Surface Plasmon Resonance Integrated with Microfluidics Chip

    Full text link
    Detecting biomarkers is an efficient method to diagnose and monitor patients’ stages. For more accurate diagnoses, continuously detecting and monitoring multiple biomarkers are needed. To achieve point-of-care testing (POCT) of multiple biomarkers, a smartphone biosensor system with the multi-testing-unit (SBSM) based on localized surface plasmon resonance (LSPR) integrated multi-channel microfluidics was presented. The SBSM could simultaneously record nine sensor units to achieve the detection of multiple biomarkers. Additional 72 sensor units were fabricated for further verification. Well-designed modularized attachments consist of a light source, lenses, a grating, a case, and a smartphone shell. The attachments can be well assembled and attached to a smartphone. The sensitivity of the SBSM was 161.0 nm/RIU, and the limit of detection (LoD) reached 4.2 U/mL for CA125 and 0.87 U/mL for CA15-3 through several clinical serum specimens testing on the SBSM. The testing results indicated that the SBSM was a useful tool for detecting multi-biomarkers. Comparing with the enzyme-linked immunosorbent assays (ELISA) results, the results from the SBSM were correlated and reliable. Meanwhile, the SBSM was convenient to operate without much professional skill. Therefore, the SBSM could become useful equipment for point-of-care testing due to its small size, multi-testing unit, usability, and customizable design

    Route to one-step microstructure mold fabrication for PDMS microfluidic chip

    Full text link
    The microstructure mold fabrication for PDMS microfluidic chip remains complex and time-consuming process requiring special equipment and protocols: photolithography and etching. Thus, a rapid and cost-effective method is highly needed. Comparing with the traditional microfluidic chip fabricating process based on the micro-electromechanical system (MEMS), this method is simple and easy to implement, and the whole fabrication process only requires 1-2 h. Different size of microstructure from 100 to 1000 μm was fabricated, and used to culture four kinds of breast cancer cell lines. Cell viability and morphology was assessed when they were cultured in the micro straight channels, micro square holes and the bonding PDMS-glass microfluidic chip. The experimental results indicate that the microfluidic chip is good and meet the experimental requirements. This method can greatly reduce the process time and cost of the microfluidic chip, and provide a simple and effective way for the structure design and in the field of biological microfabrications and microfluidic chips
    corecore