287 research outputs found

    Computational complexity arising from degree correlations in networks

    Full text link
    We apply a Bethe-Peierls approach to statistical-mechanics models defined on random networks of arbitrary degree distribution and arbitrary correlations between the degrees of neighboring vertices. Using the NP-hard optimization problem of finding minimal vertex covers on these graphs, we show that such correlations may lead to a qualitatively different solution structure as compared to uncorrelated networks. This results in a higher complexity of the network in a computational sense: Simple heuristic algorithms fail to find a minimal vertex cover in the highly correlated case, whereas uncorrelated networks seem to be simple from the point of view of combinatorial optimization.Comment: 4 pages, 1 figure, accepted in Phys. Rev.

    Inference algorithms for gene networks: a statistical mechanics analysis

    Full text link
    The inference of gene regulatory networks from high throughput gene expression data is one of the major challenges in systems biology. This paper aims at analysing and comparing two different algorithmic approaches. The first approach uses pairwise correlations between regulated and regulating genes; the second one uses message-passing techniques for inferring activating and inhibiting regulatory interactions. The performance of these two algorithms can be analysed theoretically on well-defined test sets, using tools from the statistical physics of disordered systems like the replica method. We find that the second algorithm outperforms the first one since it takes into account collective effects of multiple regulators

    Stability of the replica-symmetric saddle-point in general mean-field spin-glass models

    Full text link
    Within the replica approach to mean-field spin-glasses the transition from ergodic high-temperature behaviour to the glassy low-temperature phase is marked by the instability of the replica-symmetric saddle-point. For general spin-glass models with non-Gaussian field distributions the corresponding Hessian is a 2n×2n2^n\times 2^n matrix with the number nn of replicas tending to zero eventually. We block-diagonalize this Hessian matrix using representation theory of the permutation group and identify the blocks related to the spin-glass susceptibility. Performing the limit n→0n\to 0 within these blocks we derive expressions for the de~Almeida-Thouless line of general spin-glass models. Specifying these expressions to the cases of the Sherrington-Kirkpatrick, Viana-Bray, and the L\'evy spin glass respectively we obtain results in agreement with previous findings using the cavity approach

    Message passing for vertex covers

    Full text link
    Constructing a minimal vertex cover of a graph can be seen as a prototype for a combinatorial optimization problem under hard constraints. In this paper, we develop and analyze message passing techniques, namely warning and survey propagation, which serve as efficient heuristic algorithms for solving these computational hard problems. We show also, how previously obtained results on the typical-case behavior of vertex covers of random graphs can be recovered starting from the message passing equations, and how they can be extended.Comment: 25 pages, 9 figures - version accepted for publication in PR

    Sudden emergence of q-regular subgraphs in random graphs

    Full text link
    We investigate the computationally hard problem whether a random graph of finite average vertex degree has an extensively large qq-regular subgraph, i.e., a subgraph with all vertices having degree equal to qq. We reformulate this problem as a constraint-satisfaction problem, and solve it using the cavity method of statistical physics at zero temperature. For q=3q=3, we find that the first large qq-regular subgraphs appear discontinuously at an average vertex degree c_\reg{3} \simeq 3.3546 and contain immediately about 24% of all vertices in the graph. This transition is extremely close to (but different from) the well-known 3-core percolation point c_\cor{3} \simeq 3.3509. For q>3q>3, the qq-regular subgraph percolation threshold is found to coincide with that of the qq-core.Comment: 7 pages, 5 figure

    A hard-sphere model on generalized Bethe lattices: Statics

    Full text link
    We analyze the phase diagram of a model of hard spheres of chemical radius one, which is defined over a generalized Bethe lattice containing short loops. We find a liquid, two different crystalline, a glassy and an unusual crystalline glassy phase. Special attention is also paid to the close-packing limit in the glassy phase. All analytical results are cross-checked by numerical Monte-Carlo simulations.Comment: 24 pages, revised versio

    Zero temperature solutions of the Edwards-Anderson model in random Husimi Lattices

    Full text link
    We solve the Edwards-Anderson model (EA) in different Husimi lattices. We show that, at T=0, the structure of the solution space depends on the parity of the loop sizes. Husimi lattices with odd loop sizes have always a trivial paramagnetic solution stable under 1RSB perturbations while, in Husimi lattices with even loop sizes, this solution is absent. The range of stability under 1RSB perturbations of this and other RS solutions is computed analytically (when possible) or numerically. We compute the free-energy, the complexity and the ground state energy of different Husimi lattices at the level of the 1RSB approximation. We also show, when the fraction of ferromagnetic couplings increases, the existence, first, of a discontinuous transition from a paramagnetic to a spin glass phase and latter of a continuous transition from a spin glass to a ferromagnetic phase.Comment: 20 pages, 10 figures (v3: Corrected analysis of transitions. Appendix proof fixed

    Glassy states in lattice models with many coexisting crystalline phases

    Full text link
    We study the emergence of glassy states after a sudden cooling in lattice models with short range interactions and without any a priori quenched disorder. The glassy state emerges whenever the equilibrium model possesses a sufficient number of coexisting crystalline phases at low temperatures, provided the thermodynamic limit be taken before the infinite time limit. This result is obtained through simulations of the time relaxation of the standard Potts model and some exclusion models equipped with a local stochastic dynamics on a square lattice.Comment: 12 pages, 4 figure

    Approximation schemes for the dynamics of diluted spin models: the Ising ferromagnet on a Bethe lattice

    Full text link
    We discuss analytical approximation schemes for the dynamics of diluted spin models. The original dynamics of the complete set of degrees of freedom is replaced by a hierarchy of equations including an increasing number of global observables, which can be closed approximately at different levels of the hierarchy. We illustrate this method on the simple example of the Ising ferromagnet on a Bethe lattice, investigating the first three possible closures, which are all exact in the long time limit, and which yield more and more accurate predictions for the finite-time behavior. We also investigate the critical region around the phase transition, and the behavior of two-time correlation functions. We finally underline the close relationship between this approach and the dynamical replica theory under the assumption of replica symmetry.Comment: 21 pages, 5 figure

    Inference of kinetic Ising model on sparse graphs

    Full text link
    Based on dynamical cavity method, we propose an approach to the inference of kinetic Ising model, which asks to reconstruct couplings and external fields from given time-dependent output of original system. Our approach gives an exact result on tree graphs and a good approximation on sparse graphs, it can be seen as an extension of Belief Propagation inference of static Ising model to kinetic Ising model. While existing mean field methods to the kinetic Ising inference e.g., na\" ive mean-field, TAP equation and simply mean-field, use approximations which calculate magnetizations and correlations at time tt from statistics of data at time t−1t-1, dynamical cavity method can use statistics of data at times earlier than t−1t-1 to capture more correlations at different time steps. Extensive numerical experiments show that our inference method is superior to existing mean-field approaches on diluted networks.Comment: 9 pages, 3 figures, comments are welcom
    • 

    corecore