290 research outputs found
Multifractal analysis of perceptron learning with errors
Random input patterns induce a partition of the coupling space of a
perceptron into cells labeled by their output sequences. Learning some data
with a maximal error rate leads to clusters of neighboring cells. By analyzing
the internal structure of these clusters with the formalism of multifractals,
we can handle different storage and generalization tasks for lazy students and
absent-minded teachers within one unified approach. The results also allow some
conclusions on the spatial distribution of cells.Comment: 11 pages, RevTex, 3 eps figures, version to be published in Phys.
Rev. E 01Jan9
Computational complexity arising from degree correlations in networks
We apply a Bethe-Peierls approach to statistical-mechanics models defined on
random networks of arbitrary degree distribution and arbitrary correlations
between the degrees of neighboring vertices. Using the NP-hard optimization
problem of finding minimal vertex covers on these graphs, we show that such
correlations may lead to a qualitatively different solution structure as
compared to uncorrelated networks. This results in a higher complexity of the
network in a computational sense: Simple heuristic algorithms fail to find a
minimal vertex cover in the highly correlated case, whereas uncorrelated
networks seem to be simple from the point of view of combinatorial
optimization.Comment: 4 pages, 1 figure, accepted in Phys. Rev.
Exponentially hard problems are sometimes polynomial, a large deviation analysis of search algorithms for the random Satisfiability problem, and its application to stop-and-restart resolutions
A large deviation analysis of the solving complexity of random
3-Satisfiability instances slightly below threshold is presented. While finding
a solution for such instances demands an exponential effort with high
probability, we show that an exponentially small fraction of resolutions
require a computation scaling linearly in the size of the instance only. This
exponentially small probability of easy resolutions is analytically calculated,
and the corresponding exponent shown to be smaller (in absolute value) than the
growth exponent of the typical resolution time. Our study therefore gives some
theoretical basis to heuristic stop-and-restart solving procedures, and
suggests a natural cut-off (the size of the instance) for the restart.Comment: Revtex file, 4 figure
Simplest random K-satisfiability problem
We study a simple and exactly solvable model for the generation of random
satisfiability problems. These consist of random boolean constraints
which are to be satisfied simultaneously by logical variables. In
statistical-mechanics language, the considered model can be seen as a diluted
p-spin model at zero temperature. While such problems become extraordinarily
hard to solve by local search methods in a large region of the parameter space,
still at least one solution may be superimposed by construction. The
statistical properties of the model can be studied exactly by the replica
method and each single instance can be analyzed in polynomial time by a simple
global solution method. The geometrical/topological structures responsible for
dynamic and static phase transitions as well as for the onset of computational
complexity in local search method are thoroughly analyzed. Numerical analysis
on very large samples allows for a precise characterization of the critical
scaling behaviour.Comment: 14 pages, 5 figures, to appear in Phys. Rev. E (Feb 2001). v2: minor
errors and references correcte
Gene-network inference by message passing
The inference of gene-regulatory processes from gene-expression data belongs
to the major challenges of computational systems biology. Here we address the
problem from a statistical-physics perspective and develop a message-passing
algorithm which is able to infer sparse, directed and combinatorial regulatory
mechanisms. Using the replica technique, the algorithmic performance can be
characterized analytically for artificially generated data. The algorithm is
applied to genome-wide expression data of baker's yeast under various
environmental conditions. We find clear cases of combinatorial control, and
enrichment in common functional annotations of regulated genes and their
regulators.Comment: Proc. of International Workshop on Statistical-Mechanical Informatics
2007, Kyot
Sudden emergence of q-regular subgraphs in random graphs
We investigate the computationally hard problem whether a random graph of
finite average vertex degree has an extensively large -regular subgraph,
i.e., a subgraph with all vertices having degree equal to . We reformulate
this problem as a constraint-satisfaction problem, and solve it using the
cavity method of statistical physics at zero temperature. For , we find
that the first large -regular subgraphs appear discontinuously at an average
vertex degree c_\reg{3} \simeq 3.3546 and contain immediately about 24% of
all vertices in the graph. This transition is extremely close to (but different
from) the well-known 3-core percolation point c_\cor{3} \simeq 3.3509. For
, the -regular subgraph percolation threshold is found to coincide with
that of the -core.Comment: 7 pages, 5 figure
Gene-network inference by message passing
The inference of gene-regulatory processes from gene-expression data belongs
to the major challenges of computational systems biology. Here we address the
problem from a statistical-physics perspective and develop a message-passing
algorithm which is able to infer sparse, directed and combinatorial regulatory
mechanisms. Using the replica technique, the algorithmic performance can be
characterized analytically for artificially generated data. The algorithm is
applied to genome-wide expression data of baker's yeast under various
environmental conditions. We find clear cases of combinatorial control, and
enrichment in common functional annotations of regulated genes and their
regulators.Comment: Proc. of International Workshop on Statistical-Mechanical Informatics
2007, Kyot
Gene-network inference by message passing
The inference of gene-regulatory processes from gene-expression data belongs
to the major challenges of computational systems biology. Here we address the
problem from a statistical-physics perspective and develop a message-passing
algorithm which is able to infer sparse, directed and combinatorial regulatory
mechanisms. Using the replica technique, the algorithmic performance can be
characterized analytically for artificially generated data. The algorithm is
applied to genome-wide expression data of baker's yeast under various
environmental conditions. We find clear cases of combinatorial control, and
enrichment in common functional annotations of regulated genes and their
regulators.Comment: Proc. of International Workshop on Statistical-Mechanical Informatics
2007, Kyot
Inference algorithms for gene networks: a statistical mechanics analysis
The inference of gene regulatory networks from high throughput gene
expression data is one of the major challenges in systems biology. This paper
aims at analysing and comparing two different algorithmic approaches. The first
approach uses pairwise correlations between regulated and regulating genes; the
second one uses message-passing techniques for inferring activating and
inhibiting regulatory interactions. The performance of these two algorithms can
be analysed theoretically on well-defined test sets, using tools from the
statistical physics of disordered systems like the replica method. We find that
the second algorithm outperforms the first one since it takes into account
collective effects of multiple regulators
Glassy behavior induced by geometrical frustration in a hard-core lattice gas model
We introduce a hard-core lattice-gas model on generalized Bethe lattices and
investigate analytically and numerically its compaction behavior. If
compactified slowly, the system undergoes a first-order crystallization
transition. If compactified much faster, the system stays in a meta-stable
liquid state and undergoes a glass transition under further compaction. We show
that this behavior is induced by geometrical frustration which appears due to
the existence of short loops in the generalized Bethe lattices. We also compare
our results to numerical simulations of a three-dimensional analog of the
model.Comment: 7 pages, 4 figures, revised versio
- …