435 research outputs found

    Strangeness in the nucleon and the ratio of proton-to-neutron neutrino-induced quasi-elastic yield

    Get PDF
    The electroweak form factors of the nucleon as obtained within a three flavor pseudoscalar vector meson soliton model are employed to predict the ratio of the proton and neutron yields from 12C^{12}C, which are induced by quasi-elastic neutrino reactions. These predictions are found to vary only moderately in the parameter space allowed by the model. The antineutrino flux of the up-coming experiment determining this ratio was previously overestimated. The corresponding correction is shown to have only a small effect on the predicted ratio. However, it is found that the experimental result for the ratio crucially depends on an accurate measurement of the energy of the knocked out nucleon.Comment: 17 pages, LaTeX, 2 tables, 4 figures, Discussion on shape of strange form factors added, Z. Phys. A, to be publishe

    Toxoplasma seroprevalence in a rural population in France: detection of a household effect

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Toxoplasma gondii</it>, the agent of toxoplasmosis, has a complex life cycle. In humans, the parasite may be acquired either through ingestion of contaminated meat or through oocysts present in the environment. The importance of each source of contamination varies locally according to the environment characteristics and to differences concerning human eating habits and the presence of cats; thus, the risk factors may be determined through fine-scale studies. Here, we searched for factors associated with seropositivity in the population of two adjacent villages in Lorraine region, France.</p> <p>Methods</p> <p>All voluntary inhabitants filled out a questionnaire and gave a blood sample. The seroprevalence was estimated globally and according to the inhabitants' ages using a cubic spline regression. A mixed logistic regression model was used to quantify the effect of individual and household factors on the probability of seropositivity.</p> <p>Results</p> <p>Based on serological results from 273 persons, we estimated seroprevalence to be 47% (95% confidence interval: 41 to 53%). That seroprevalence increased with age: the slope was the steepest up to the age of 40 years (OR = 2.48 per 10-year increment, 95% credibility interval: [1.29 to 5.09]), but that increase was not significant afterwards. The probability of seropositivity tended to be higher in men than in women (OR = 2.01, 95% credibility interval: [0.92 to 4.72]) and in subjects eating raw vegetables at least once a week than in the others (OR = 8.4, 95% credibility interval: [0.93 to 72.1]). These effects were close to statistical significance. The multivariable analysis highlighted a significant seroprevalence heterogeneity among households. That seroprevalence varied between 6 and 91% (5<sup>th </sup>and 95<sup>th </sup>percentile of the household seropositivity distribution).</p> <p>Conclusion</p> <p>The major finding is the household effect, with a strong heterogeneity of seroprevalence among households. This effect may be explained by common exposures of household members to local risk factors. Future work will quantify the link between the presence of oocysts in the soil and the seroprevalence of exposed households using a spatial analysis.</p

    A population of luminous accreting black holes with hidden mergers

    Full text link
    Major galaxy mergers are thought to play an important part in fuelling the growth of supermassive black holes. However, observational support for this hypothesis is mixed, with some studies showing a correlation between merging galaxies and luminous quasars and others showing no such association. Recent observations have shown that a black hole is likely to become heavily obscured behind merger-driven gas and dust, even in the early stages of the merger, when the galaxies are well separated (5 to 40 kiloparsecs). Merger simulations further suggest that such obscuration and black-hole accretion peaks in the final merger stage, when the two galactic nuclei are closely separated (less than 3 kiloparsecs). Resolving this final stage requires a combination of high-spatial-resolution infrared imaging and high-sensitivity hard-X-ray observations to detect highly obscured sources. However, large numbers of obscured luminous accreting supermassive black holes have been recently detected nearby (distances below 250 megaparsecs) in X-ray observations. Here we report high-resolution infrared observations of hard-X-ray-selected black holes and the discovery of obscured nuclear mergers, the parent populations of supermassive-black-hole mergers. We find that obscured luminous black holes (bolometric luminosity higher than 2x10^44 ergs per second) show a significant (P<0.001) excess of late-stage nuclear mergers (17.6 per cent) compared to a sample of inactive galaxies with matching stellar masses and star formation rates (1.1 per cent), in agreement with theoretical predictions. Using hydrodynamic simulations, we confirm that the excess of nuclear mergers is indeed strongest for gas-rich major-merger hosts of obscured luminous black holes in this final stage.Comment: To appear in the 8 November 2018 issue of Nature. This is the authors' version of the wor

    Aintegumenta and Aintegumenta-Like6 regulate auxin-mediated flower development in Arabidopsis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Two related genes encoding AP2/ERF-type transcription factors, <it>AINTEGUMENTA </it>(<it>ANT</it>) and <it>AINTEGUMENTA-LIKE6 </it>(<it>AIL6</it>), are important regulators of floral growth and patterning in Arabidopsis. Evidence suggests that these genes promote several aspects of flower development in response to auxin. To investigate the interplay of <it>ANT</it>, <it>AIL6 </it>and auxin during floral development, I have examined the phenotypic consequences of disrupting polar auxin transport in <it>ant</it>, <it>ail6 </it>and <it>ant ail6 </it>mutants by either genetic or chemical means.</p> <p>Results</p> <p>Plants containing mutations in <it>ANT </it>or <it>AIL6 </it>alone or in both genes together exhibit increased sensitivity to disruptions in polar auxin transport. Both genes promote shoot growth, floral meristem initiation and floral meristem patterning in combination with auxin transport. However, differences in the responses of <it>ant </it>and <it>ail6 </it>single mutants to perturbations in auxin transport suggest that these two genes also have non-overlapping activities in each of these developmental processes.</p> <p>Conclusions</p> <p>The enhanced sensitivity of <it>ant </it>and <it>ail6 </it>mutants to alterations in polar auxin transport suggests that these mutants have defects in some aspect of auxin physiology. The inability of <it>ant ail6 </it>double mutants to initiate flowers in backgrounds disrupted for auxin transport confirm the proposed roles for these two genes in floral meristem initiation.</p

    Combination antiretroviral therapy and the risk of myocardial infarction

    Get PDF

    Generation of ESTs for Flowering Gene Discovery and SSR Marker Development in Upland Cotton

    Get PDF
    BACKGROUND: Upland cotton, Gossypium hirsutum L., is one of the world's most important economic crops. In the absence of the entire genomic sequence, a large number of expressed sequence tag (EST) resources of upland cotton have been generated and used in several studies. However, information about the flower development of this species is rare. METHODOLOGY/PRINCIPAL FINDINGS: To clarify the molecular mechanism of flower development in upland cotton, 22,915 high-quality ESTs were generated and assembled into 14,373 unique sequences consisting of 4,563 contigs and 9,810 singletons from a normalized and full-length cDNA library constructed from pooled RNA isolated from shoot apexes, squares, and flowers. Comparative analysis indicated that 5,352 unique sequences had no high-degree matches to the cotton public database. Functional annotation showed that several upland cotton homologs with flowering-related genes were identified in our library. The majority of these genes were specifically expressed in flowering-related tissues. Three GhSEP (G. hirsutum L. SEPALLATA) genes determining floral organ development were cloned, and quantitative real-time PCR (qRT-PCR) revealed that these genes were expressed preferentially in squares or flowers. Furthermore, 670 new putative microsatellites with flanking sequences sufficient for primer design were identified from the 645 unigenes. Twenty-five EST-simple sequence repeats were randomly selected for validation and transferability testing in 17 Gossypium species. Of these, 23 were identified as true-to-type simple sequence repeat loci and were highly transferable among Gossypium species. CONCLUSIONS/SIGNIFICANCE: A high-quality, normalized, full-length cDNA library with a total of 14,373 unique ESTs was generated to provide sequence information for gene discovery and marker development related to upland cotton flower development. These EST resources form a valuable foundation for gene expression profiling analysis, functional analysis of newly discovered genes, genetic linkage, and quantitative trait loci analysis

    A Quantitative and Dynamic Model for Plant Stem Cell Regulation

    Get PDF
    Plants maintain pools of totipotent stem cells throughout their entire life. These stem cells are embedded within specialized tissues called meristems, which form the growing points of the organism. The shoot apical meristem of the reference plant Arabidopsis thaliana is subdivided into several distinct domains, which execute diverse biological functions, such as tissue organization, cell-proliferation and differentiation. The number of cells required for growth and organ formation changes over the course of a plants life, while the structure of the meristem remains remarkably constant. Thus, regulatory systems must be in place, which allow for an adaptation of cell proliferation within the shoot apical meristem, while maintaining the organization at the tissue level. To advance our understanding of this dynamic tissue behavior, we measured domain sizes as well as cell division rates of the shoot apical meristem under various environmental conditions, which cause adaptations in meristem size. Based on our results we developed a mathematical model to explain the observed changes by a cell pool size dependent regulation of cell proliferation and differentiation, which is able to correctly predict CLV3 and WUS over-expression phenotypes. While the model shows stem cell homeostasis under constant growth conditions, it predicts a variation in stem cell number under changing conditions. Consistent with our experimental data this behavior is correlated with variations in cell proliferation. Therefore, we investigate different signaling mechanisms, which could stabilize stem cell number despite variations in cell proliferation. Our results shed light onto the dynamic constraints of stem cell pool maintenance in the shoot apical meristem of Arabidopsis in different environmental conditions and developmental states

    The Spin Structure of the Nucleon

    Full text link
    We present an overview of recent experimental and theoretical advances in our understanding of the spin structure of protons and neutrons.Comment: 84 pages, 29 figure

    Genome-assisted prediction of a quantitative trait measured in parents and progeny: application to food conversion rate in chickens

    Get PDF
    Accuracy of prediction of yet-to-be observed phenotypes for food conversion rate (FCR) in broilers was studied in a genome-assisted selection context. Data consisted of FCR measured on the progeny of 394 sires with SNP information. A Bayesian regression model (Bayes A) and a semi-parametric approach (Reproducing kernel Hilbert Spaces regression, RKHS) using all available SNPs (p = 3481) were compared with a standard linear model in which future performance was predicted using pedigree indexes in the absence of genomic data. The RKHS regression was also tested on several sets of pre-selected SNPs (p = 400) using alternative measures of the information gain provided by the SNPs. All analyses were performed using 333 genotyped sires as training set, and predictions were made on 61 birds as testing set, which were sons of sires in the training set. Accuracy of prediction was measured as the Spearman correlation (r¯S) between observed and predicted phenotype, with its confidence interval assessed through a bootstrap approach. A large improvement of genome-assisted prediction (up to an almost 4-fold increase in accuracy) was found relative to pedigree index. Bayes A and RKHS regression were equally accurate (r¯S = 0.27) when all 3481 SNPs were included in the model. However, RKHS with 400 pre-selected informative SNPs was more accurate than Bayes A with all SNPs
    corecore