7 research outputs found

    Functional Characterization of Soybean Glyma04g39610 as a Brassinosteroid Receptor Gene and Evolutionary Analysis of Soybean Brassinosteroid Receptors

    No full text
    Brassinosteroids (BR) play important roles in plant growth and development. Although BR receptors have been intensively studied in Arabidopsis, the BR receptors in soybean remain largely unknown. Here, in addition to the known receptor gene Glyma06g15270 (GmBRI1a), we identified five putative BR receptor genes in the soybean genome: GmBRI1b, GmBRL1a, GmBRL1b, GmBRL2a, and GmBRL2b. Analysis of their expression patterns by quantitative real-time PCR showed that they are ubiquitously expressed in primary roots, lateral roots, stems, leaves, and hypocotyls. We used rapid amplification of cDNA ends (RACE) to clone GmBRI1b (Glyma04g39160), and found that the predicted amino acid sequence of GmBRI1b showed high similarity to those of AtBRI1 and pea PsBRI1. Structural modeling of the ectodomain also demonstrated similarities between the BR receptors of soybean and Arabidopsis. GFP-fusion experiments verified that GmBRI1b localizes to the cell membrane. We also explored GmBRI1b function in Arabidopsis through complementation experiments. Ectopic over-expression of GmBRI1b in Arabidopsis BR receptor loss-of-function mutant (bri1-5 bak1-1D) restored hypocotyl growth in etiolated seedlings; increased the growth of stems, leaves, and siliques in light; and rescued the developmental defects in leaves of the bri1-6 mutant, and complemented the responses of BR biosynthesis-related genes in the bri1-5 bak1-D mutant grown in light. Bioinformatics analysis demonstrated that the six BR receptor genes in soybean resulted from three gene duplication events during evolution. Phylogenetic analysis classified the BR receptors in dicots and monocots into three subclades. Estimation of the synonymous (Ks) and the nonsynonymous substitution rate (Ka) and selection pressure (Ka/Ks) revealed that the Ka/Ks of BR receptor genes from dicots and monocots were less than 1.0, indicating that BR receptor genes in plants experienced purifying selection during evolution

    Functional Characterization of the Steroid Reductase Genes GmDET2a and GmDET2b from Glycine max

    No full text
    Brassinosteroids are important phytohormones for plant growth and development. In soybean (Glycine max), BR receptors have been identified, but the genes encoding BR biosynthesis-related enzymes remain poorly understood. Here, we found that the soybean genome encodes eight steroid reductases (GmDET2a to GmDET2h). Phylogenetic analysis grouped 105 steroid reductases from moss, fern and higher plants into five subgroups and indicated that the steroid reductase family has experienced purifying selection. GmDET2a and GmDET2b, homologs of the Arabidopsis thaliana steroid 5 α -reductase AtDET2, are proteins of 263 amino acids. Ectopic expression of GmDET2a and GmDET2b rescued the defects of the Atdet2-1 mutant in both darkness and light. Compared to the mutant, the hypocotyl length and plant height of the transgenic lines GmDET2a and GmDET2b increased significantly, in both darkness and light, and the transcript levels of the BR biosynthesis-related genes CPD, DWF4, BR6ox-1 and BR6ox-2 were downregulated in GmDET2aOX-23 and GmDET2bOX-16 lines compared to that in Atdet2-1. Quantitative real-time PCR revealed that GmDET2a and GmDET2b are ubiquitously expressed in all tested soybean organs, including roots, leaves and hypocotyls. Moreover, epibrassinosteroid negatively regulated GmDET2a and GmDET2b expression. Sulfate deficiency downregulated GmDET2a in leaves and GmDET2b in leaves and roots; by contrast, phosphate deficiency upregulated GmDET2b in roots and leaves. Taken together, our results revealed that GmDET2a and GmDET2b function as steroid reductases

    Testing a bell-shaped function for estimation of fully expanded leaf area in modern maize under potential production conditions

    No full text
    Accurate leaf area simulation is critical for the performance of crop growth models. Area of fully expanded individual leaves of maize hybrids released before 1995 (defined as old hybrids) has been simulated using a bell-shaped function (BSF) and the relationship between its parameters and total leaf number (TLNO). However, modern high-yielding maize hybrids show different canopy architectures. The function parameters calibrated for old hybrids will not accurately represent modern hybrids. In this study, we evaluated these functions using a dataset including old and modern hybrids that have been widely planted in China in recent years. Maximum individual leaf area (Y0) and corresponding leaf position (X0) were not predicted well by TLNO (R2 = 0.56 and R2 = 0.70) for modern hybrids. Using recalibrated shape parameters a and b with values of Y0 and X0 for modern hybrids, the BSF accurately predicted individual leaf area (R2 = 0.95–0.99) and total leaf area of modern hybrids (R2 = 0.98). The results show that the BSF is still a robust way to predict the fully expanded leaf area of maize when parameters a and b are modified and Y0 and X0 are fitted. Breeding programs have led to increases in TLNO of maize but have not altered Y0 and X0, reducing the correlation between Y0, X0, and TLNO. For modern hybrids, the values of Y0 and X0 are hybrid-specific. Modern hybrids tend to have less-negative values of parameter a and more-positive values of parameter b in the leaf profile. Growth conditions, such as plant density and environmental conditions, also affect the fully expanded leaf area but were not considered in the original published equations. Thus, further research is needed to accurately estimate values of Y0 and X0 of individual modern hybrids to improve simulation of maize leaf area in crop growth models. Keywords: Hybrids, Leaf area, Leaf number, Plant density, Environmental condition

    Heterogeneous oxidation mechanism of SO2 on α-Fe2O3 (001) catalyst by HONO: Effect of oxygen defect

    No full text
    To investigate the heterogeneous oxidation mechanisms of SO2 by HONO on the α-Fe2O3 surfaces, the individual and combined adsorption characteristics of SO2 and HONO on the perfect and Odefect α-Fe2O3 (001) surfaces were calculated the density functional theory. Results revealed that SO2 was molecularly adsorbed while HONO was dissociated on prefect and Odefect surfaces. Oxygen defect significantly augmented the adsorption intensities of SO2 and HONO and accelerated decomposition (HONO →·OH + NO) of HONO. Analysis of electronic structures demonstrated demonstrated that the decomposition of HONO followed the Haber-Weiss mechanism. HOSO2 was generated (SO2 + ·OH → HOSO2) on the prefect and Odefect surfaces through SO2 and HONO co-adsorption, thereby confirming that SO2 was oxidized. Moreover, the low energy barrier of HONO decomposition (prefect: 90.67 kJ/mol; Odefect: 50.20 kJ/mol) and SO2 oxidation (prefect: 46.90 kJ/mol; Odefect: 31.09 kJ/mol) suggested that SO2 was easily oxidized by HONO on the α-Fe2O3 (001) surface
    corecore