55 research outputs found

    Optical detection of a BCS transition of Lithium-6 in harmonic traps

    Full text link
    We study the detection of a BCS transition within a sample of Lithium--6 atoms confined in a harmonic trap. Using the local density approximation we calculate the pair correlation function in the normal and superfluid state at zero temperature. We show that the softening of the Fermi hole associated with a BCS transition leads to an observable increase in the intensity of off--resonant light scattered from the atomic cloud at small angles.Comment: 7 pages, 3 figures, submitted to Europhysics Letter

    Cavity cooling of a nanomechanical resonator by light scattering

    Full text link
    We present a novel method for opto-mechanical cooling of sub-wavelength sized nanomechanical resonators. Our scheme uses a high finesse Fabry-Perot cavity of small mode volume, within which the nanoresonator is acting as a position-dependant perturbation by scattering. In return, the back-action induced by the cavity affects the nanoresonator dynamics and can cool its fluctuations. We investigate such cavity cooling by scattering for a nanorod structure and predict that ground-state cooling is within reach.Comment: 4 pages, 3 figure

    A Carbon Nanofilament-Bead Necklace

    Get PDF
    Carbon nanofilaments with carbon beads grown on their surfaces were successfully synthesized reproducibly by a floating catalyst CVD method. The nanofilaments hosting the pearl-like structures typically show an average diameter of about 60 nm, which mostly consists of low-ordered graphite layers. The beads with diameter range 150−450 nm are composed of hundreds of crumpled and random graphite layers. The mechanism for the formation of these beaded nanofilaments is ascribed to two nucleation processes of the pyrolytic carbon deposition, arising from a temperature gradient between different parts of the reaction chamber. Furthermore, the Raman scattering properties of the beaded nanofilaments have been measured, as well as their confocal Raman G-line images. The Raman spectra reveal that that the trunks of the nanofilaments have better graphitic properties than the beads, which is consistent with the HRTEM analysis. The beaded nanofilaments are expected to have high potential applications in composites, which should exhibit both particle- and fiber-reinforcing functions for the host matrixes

    Laser-induced collective excitations in a two-component Fermi gas

    Full text link
    We consider the linear density response of a two-component (superfluid) Fermi gas of atoms when the perturbation is caused by laser light. We show that various types of laser excitation schemes can be transformed into linear density perturbations, however, a Bragg spectroscopy scheme is needed for transferring energy and momentum into a collective mode. This makes other types of laser probing schemes insensitive for collective excitations and therefore well suited for the detection of the superfluid order parameter. We show that for the special case when laser light is coupled between the two components of the Fermi gas, density response is always absent in a homogeneous system.Comment: 6 pages, no figure

    Lattice-Gas Simulations of Minority-Phase Domain Growth in Binary Immiscible and Ternary Amphiphilic Fluid

    Full text link
    We investigate the growth kinetics of binary immiscible fluids and emulsions in two dimensions using a hydrodynamic lattice-gas model. We perform off-critical quenches in the binary fluid case and find that the domain size within the minority phase grows algebraically with time in accordance with theoretical predictions. In the late time regime we find a growth exponent n = 0.45 over a wide range of concentrations, in good agreement with other simluations. In the early time regime we find no universal growth exponent but a strong dependence on the concentration of the minority phase. In the ternary amphiphilic fluid case the kinetics of self assembly of the droplet phase are studied for the first time. At low surfactant concentrations, we find that, after an early algebraic growth, a nucleation regime dominates the late-time kinetics, which is enhanced by an increasing concentration of surfactant. With a further increase in the concentration of surfactant, we see a crossover to logarithmically slow growth, and finally saturation of the oil droplets, which we fit phenomenologically to a stretched exponential function. Finally, the transition between the droplet and the sponge phase is studied.Comment: 22 pages, 13 figures, submitted to PR

    Signatures of resonance superfluidity in a quantum Fermi gas

    Get PDF
    In this letter, we predict a direct and observable signature of the superfluid phase in a quantum Fermi gas, in a temperature regime already accessible in current experiments. We apply the theory of resonance superfluidity to a gas confined in a harmonic potential and demonstrate that a significant increase in density will be observed in the vicinity of the trap center.Comment: 4 pages, 4 figure

    Laser probing of Cooper-paired trapped atoms

    Full text link
    We consider a gas of trapped Cooper-paired fermionic atoms which are manipulated by laser light. The laser induces a transition from an internal state with large negative scattering length (superfluid) to one with weaker interactions (normal gas). We show that the process can be used to detect the presence of the superconducting order parameter. Also, we propose a direct way of measuring the size of the gap in the trap. The efficiency and feasibility of this probing method is investigated in detail in different physical situations.Comment: 9 pages, 8 figure

    Vortices in superfluid trapped Fermi gases at zero temperature

    Full text link
    We discuss various aspects of the vortex state of a dilute superfluid atomic Fermi gas at T=0. The energy of the vortex in a trapped gas is calculated and we provide an expression for the thermodynamic critical rotation frequency of the trap for its formation. Furthermore, we propose a method to detect the presence of a vortex by calculating the effect of its associated velocity field on the collective mode spectrum of the gas
    corecore