6 research outputs found

    Optimal microgrid scheduling with peak load reduction involving an electrolyzer and flexible loads

    No full text
    This work consists of a multi-objective mixed-integer linear programming model for defining optimized schedules of components in a grid-connected microgrid. The microgrid includes a hydrogen energy system consisting of an alkaline electrolyzer, hydrogen cylinder bundles and a fuel cell for energy storage. Local generation is provided from photovoltaic panels, and the load is given by a fixed load profile combined with a flexible electrical load, which is a battery electric vehicle. The electrolyzer has ramp-up constraints which are modeled explicitly. The objective function includes, besides operational costs and an environmental indicator, a representation of peak power costs, thus leading to an overall peak load reduction under optimized operation. The model is used both for controlling a microgrid in a field trial set-up deployed in South-West Germany and for simulating the microgrid operation for defined period, thus allowing for economic system evaluation. Results from defined sample runs show that the energy storage is primarily used for trimming the peak of electricity drawn from the public grid and is not solely operated with excess power. The flexible demand operation also helps keeping the peak at its possible minimum

    Preissensitivität und Kundenbindung im Strommarkt: Auf den Vertriebskanal kommt es an

    No full text
    Der Endkundenvertrieb ist für die Bewahrung und Weiterentwicklung des Kundenstamms eines Energieversorgers essenziell. Doch um knappe Mittel im Vertrieb möglichst wirkungsvoll einsetzen zu können, wird Wissen darüber benötigt, wie sich die durchschnittlich erzielbaren Strompreise und die zu erwartende Kundenbindungsdauer zwischen verschiedenen Vertriebskanälen unterscheiden. Leitet man anhand dieser Informationen den Wert eines Kunden je Vertriebskanal ab, lässt sich treffsicherer über einzusetzende Marketing-Budgets entscheiden

    Seismic Study of Tremor, Deep Long-Period Earthquakes, and Basin Amplification of Ground Motion

    No full text
    Thesis (Ph.D.)--University of Washington, 2017In this thesis, we use seismic data and seismological tools to investigate three topics, (1) triggering between slow slip (tremor as proxy) and nearby small earthquakes, (2) mechanisms of deep-long period earthquakes beneath Mount St. Helens, and (3) ground motion amplification in Seattle Basin. In Chapter 1, we investigate 12-year earthquake and tremor catalogs for southwest Japan, and find nearby small intraslab earthquakes are weakly correlated with tremor. In particular, intraslab earthquakes tend to be followed by tremor more often than expected at random, while the excess number of tremor before earthquakes is not as significant. The underlying triggering mechanism of tremor and inferred slow slip by earthquakes is most likely to be the dynamic stress changes (several to several tens of kPa) rather than the much smaller static stress changes. In Chapter 2, we use the catalog DLPs as templates to search for repeating events at Mount St. Helens (MSH). We have detected 277 DLPs, compared to only 22 events previously in the catalog from 2007 to 2016. Three templates from the catalog are single events, while all other templates produced matches, identifying loci of repeated activity. Overall, the detected DLPs show no significant correlation with either the subduction zone tremor and slow slip (ETS) west of MSH, or the shallow seismicity. Temporal analysis shows an elevated rate of DLPs at time of compressional tidal stress, suggesting their possible association with magmatic and/or fluid activity. We observed variable S wave polarization of the DLPs from the most productive DLP source region, indicating their source mechanisms are not identical. In Chapter 3, we use noise correlation to retrieve the empirical green’s functions (EGFs) in Seattle Basin. Consistent amplitudes measured from noise EGFs, teleseismic S wave and numerical simulations all suggest the usefulness of the amplitude of EGFs. For surface wave with period of 5-10 sec propagating from west to east, the ground motion is amplified by a factor of up to 3 within the basin. The bias of EGFs from noise heterogeneity and uncertainties of synthetics due to inaccuracy of velocity model are still to be investigated
    corecore