436 research outputs found
Systemic similarity analysis of compatibility drug-induced multiple pathway patterns _in vivo_
A major challenge in post-genomic research is to understand how physiological and pathological phenotypes arise from the networks of expressed genes and to develop powerful tools for translating the information exchanged between gene and the organ system networks. Although different expression modules may contribute independently to different phenotypes, it is difficult to interpret microarray experimental results at the level of single gene associations. The global effects and response pathways of small molecules in cells have been investigated, but the quantitative details of the activation mechanisms of multiple pathways _in vivo_ are not well understood. Similar response networks indicate similar modes of action, and gene networks may appear to be similar despite differences in the behaviour of individual gene groups. Here we establish the method for assessing global effect spectra of the complex signaling forms using Global Similarity Index (GSI) in cosines vector included angle. Our approach provides quantitative multidimensional measures of genes expression profile based on drug-dependent phenotypic alteration _in vivo_. These results make a starting point for identifying relationships between GSI at the molecular level and a step toward phenotypic outcomes at a system level to predict action of unknown compounds and any combination therapy
H-ensemble: An Information Theoretic Approach to Reliable Few-Shot Multi-Source-Free Transfer
Multi-source transfer learning is an effective solution to data scarcity by
utilizing multiple source tasks for the learning of the target task. However,
access to source data and model details is limited in the era of commercial
models, giving rise to the setting of multi-source-free (MSF) transfer learning
that aims to leverage source domain knowledge without such access. As a newly
defined problem paradigm, MSF transfer learning remains largely underexplored
and not clearly formulated. In this work, we adopt an information theoretic
perspective on it and propose a framework named H-ensemble, which dynamically
learns the optimal linear combination, or ensemble, of source models for the
target task, using a generalization of maximal correlation regression. The
ensemble weights are optimized by maximizing an information theoretic metric
for transferability. Compared to previous works, H-ensemble is characterized
by: 1) its adaptability to a novel and realistic MSF setting for few-shot
target tasks, 2) theoretical reliability, 3) a lightweight structure easy to
interpret and adapt. Our method is empirically validated by ablation studies,
along with extensive comparative analysis with other task ensemble and transfer
learning methods. We show that the H-ensemble can successfully learn the
optimal task ensemble, as well as outperform prior arts.Comment: AAAI 202
Multi-class cancer classification by total principal component regression (TPCR) using microarray gene expression data
DNA microarray technology provides a promising approach to the diagnosis and prognosis of tumors on a genome-wide scale by monitoring the expression levels of thousands of genes simultaneously. One problem arising from the use of microarray data is the difficulty to analyze the high-dimensional gene expression data, typically with thousands of variables (genes) and much fewer observations (samples), in which severe collinearity is often observed. This makes it difficult to apply directly the classical statistical methods to investigate microarray data. In this paper, total principal component regression (TPCR) was proposed to classify human tumors by extracting the latent variable structure underlying microarray data from the augmented subspace of both independent variables and dependent variables. One of the salient features of our method is that it takes into account not only the latent variable structure but also the errors in the microarray gene expression profiles (independent variables). The prediction performance of TPCR was evaluated by both leave-one-out and leave-half-out cross-validation using four well-known microarray datasets. The stabilities and reliabilities of the classification models were further assessed by re-randomization and permutation studies. A fast kernel algorithm was applied to decrease the computation time dramatically. (MATLAB source code is available upon request.
Spin chirality fluctuation in two-dimensional ferromagnets with perpendicular anisotropy
Non-coplanar spin textures with scalar spin chirality can generate effective
magnetic field that deflects the motion of charge carriers, resulting in
topological Hall effect (THE), a powerful probe of the ground state and
low-energy excitations of correlated systems. However, spin chirality
fluctuation in two-dimensional ferromagnets with perpendicular anisotropy has
not been considered in prior studies. Herein, we report direct evidence of
universal spin chirality fluctuation by probing the THE above the transition
temperatures in two different ferromagnetic ultra-thin films, SrRuO and V
doped SbTe. The temperature, magnetic field, thickness, and carrier
type dependences of the THE signal, along with our Monte-Carlo simulations,
unambiguously demonstrate that the spin chirality fluctuation is a universal
phenomenon in two-dimensional Ising ferromagnets. Our discovery opens a new
paradigm of exploring the spin chirality with topological Hall transport in
two-dimensional magnets and beyondComment: accepted by nature material
- β¦