8 research outputs found

    Can acoustic indices reflect the characteristics of public recreational behavioral in urban green spaces?

    Get PDF
    Acoustic indicators serve as an effective means of assessing the quality of urban green space soundscape. The informative, easy accessibility and non-invasive nature of acoustic monitoring renders it an excellent tool for studying the interaction among the natural environment, wildlife, and human activities. Urban green space is essential in the urban ecosystem and constitutes the primary location for public outdoor recreation. However, the existing methods for monitoring public recreational behavior, such as on-site observation, drone observation, or questionnaire interviews, require significant labor or professional expertise. All of these methods have their limitations, so there is still much to be researched in the acoustic indices and recreational behavior. As a result, the potential for using acoustic characteristics to monitor public recreational behavior remains underexplored. To address this gap, this study investigates the potential of 5 widely used acoustic indices and acoustic intensity for monitoring public recreational behavior: Acoustic Complexity Index (ACI), Acoustic Diversity Index (ADI), Acoustic Richness (AR), Normalized Difference Soundscape Index (NDSI), and Power Spectral Density (PSD). Data were collected from 35 monitoring points in urban green spaces during the opening hours (6:00–22:00) to analyze the relationship between these indices and public recreational behavior. The findings indicate that (1) ACI, ADI, and AR daily exhibited multi-peak daily variation characteristics similar to those of public recreational behavior, displaying a “W” shape, while NDSI exhibits opposite variation characteristics; (2) the spatial variation characteristics of ACI, ADI, and AR change in response to the green space, and these changes align with public recreational behavior; (3) the correlation analysis and generalized linear mixed model construction further demonstrate that acoustic indices are effective in capturing the dynamic activities of visitor behavior; and (4) PSD undergoes significant temporal dynamic changes along the frequency gradient, with different frequency intervals reflecting the activity information of different recreational behaviors. In conclusion, this research highlights the effectiveness of using acoustic indices to analyze both the spatial and temporal variation characteristics of public recreational behavior in urban green spaces. The results can provide valuable data support for the enhancement and renovation of urban green spaces

    How Vegetation Colorization Design Affects Urban Forest Aesthetic Preference and Visual Attention: An Eye-Tracking Study

    No full text
    The enhancement of the urban forest landscape through vegetation colorization has emerged as a continuous concern for urban managers in southern Chinese cities. However, the understanding of how designers can effectively select the appropriate form and intensity of colorization design to align with users’ aesthetic preferences remains limited. The process of visual perception is closely intertwined with eye movements. Employing visualization techniques, this research aims to investigate the impact of colorization design on aesthetic benefits and eye movements in urban forests, considering four intensities (slight, low, medium, and high) and three forms (aggregate, homogeneous, and random). A total of 183 participants (with an average age of 23.5 ± 2.5 years) were randomly assigned to three groups to assess the aesthetics score, while eye-tracking devices were utilized to record eye movement behaviors. The outcomes indicate that a homogeneous design form and a moderate intensity of landscaping yield higher scenic benefits for urban forests. In the case of canopy landscape, both the form and intensity of landscaping have a significant influence on urban forest aesthetics. The HCI with aggregate form showed the best marginal effect (1.313). In contrast, MCI showed the best marginal effect when the design form was random and homogeneous (1.438, 1.308). Furthermore, although the form and intensity of the colorization design significantly affect eye exploration, the perception of landscape aesthetics does not correlate with eye movements. These findings provide valuable insights for design policies aimed at promoting the urban forest landscape, while also contributing to the enrichment of research in landscape perception studies employing eye-tracking technology.Forestry, Faculty ofNon UBCReviewedFacultyResearche

    Carboxymethyl cellulose-grafted graphene oxide for efficient antitumor drug delivery

    No full text
    A drug delivery system based on carboxymethyl cellulose-grafted graphene oxide loaded by methotrexate (MTX/CMC-GO) with pH-sensitive and controlled drug-release properties was developed in this work. CMC was grafted on graphene oxide by ethylenediamine through hydrothermal treatment. CMC serves as a pH-sensitive trigger, while CMC-GO serves as a drug-carrying vehicle due to the curved layer and large plain surface. Different amounts of drugs could be loaded into CMC-GO nanocarriers by control of the original amount of drug/carrier ratios. Additionally, low cytotoxicity against NIH-3T3 cells and low in vivo toxicity was observed. In vivo tumor growth inhibition assays showed that MTX/CMC-GO demonstrated superior antitumor activity than free MTX against HT-29 cells. Moreover, prolonged survival time of mice was observed after MTX/CMC-GO administration. The MTX/CMC-GO drug delivery system has a great potential in colon cancer therapy

    Can acoustic indices reflect the characteristics of public recreational behavioral in urban green spaces?

    No full text
    Acoustic indicators serve as an effective means of assessing the quality of urban green space soundscape. The informative, easy accessibility and non-invasive nature of acoustic monitoring renders it an excellent tool for studying the interaction among the natural environment, wildlife, and human activities. Urban green space is essential in the urban ecosystem and constitutes the primary location for public outdoor recreation. However, the existing methods for monitoring public recreational behavior, such as on-site observation, drone observation, or questionnaire interviews, require significant labor or professional expertise. All of these methods have their limitations, so there is still much to be researched in the acoustic indices and recreational behavior. As a result, the potential for using acoustic characteristics to monitor public recreational behavior remains underexplored. To address this gap, this study investigates the potential of 5 widely used acoustic indices and acoustic intensity for monitoring public recreational behavior: Acoustic Complexity Index (ACI), Acoustic Diversity Index (ADI), Acoustic Richness (AR), Normalized Difference Soundscape Index (NDSI), and Power Spectral Density (PSD). Data were collected from 35 monitoring points in urban green spaces during the opening hours (6:00–22:00) to analyze the relationship between these indices and public recreational behavior. The findings indicate that (1) ACI, ADI, and AR daily exhibited multi-peak daily variation characteristics similar to those of public recreational behavior, displaying a “W” shape, while NDSI exhibits opposite variation characteristics; (2) the spatial variation characteristics of ACI, ADI, and AR change in response to the green space, and these changes align with public recreational behavior; (3) the correlation analysis and generalized linear mixed model construction further demonstrate that acoustic indices are effective in capturing the dynamic activities of visitor behavior; and (4) PSD undergoes significant temporal dynamic changes along the frequency gradient, with different frequency intervals reflecting the activity information of different recreational behaviors. In conclusion, this research highlights the effectiveness of using acoustic indices to analyze both the spatial and temporal variation characteristics of public recreational behavior in urban green spaces. The results can provide valuable data support for the enhancement and renovation of urban green spaces

    How does 2D and 3D of urban morphology affect the seasonal land surface temperature in Island City? A block-scale perspective

    No full text
    The global climate warming caused by urbanization has significantly affected the urban environment. Whilst land surface temperature (LST) is an important factor reflecting urban temperature, previous research on LST mostly focused on two-dimensional (2D) factors and rarely mentioned about the role of three-dimensional (3D) factors, particularly the LST variation characteristics of island cities. Therefore, this study examined the seasonal variation characteristics of urban LST by analyzing the impact of 2D and 3D urban morphology factors of different urban block types on LST in Xiamen Island. The main results are as follows. First, compact low layer (CL), a block type with a higher density of low-rise buildings, has a higher LST in any season. Under the same block density (BD), the higher the block average height (BH), the lower the LST. Second, among the 2D urban morphology factors, normalized difference vegetation index (NDVI) was the main factor for cities to reduce urban LST, especially in summer, while normalized difference built-up index (NDBI) was the opposite. Different from land cities, we found a positive correlation between modified normalized difference water body index (MNDWI) and LST in autumn and winter. Third, in the 3D urban morphology factors, sky view factor (SVF) was significantly positively correlated with LST, while building fluctuation (BF) was negatively correlated. The higher the SVF, the worse the radiation shielding effect between buildings. On the contrary, the higher the BF, the higher the building undulation, and the better the building radiation shielding. These findings should provide some quantitative insights for the future construction and planning of island cities, which can be used to improve the thermal environment of island cities and support the sustainable development of cities
    corecore