32 research outputs found

    The inverse-Leidenfrost phenomenon on nanofiber mats on hot surfaces

    No full text
    The Leidenfrost effect is a technically and industrially important phenomenon that severely restricts heat removal from high-heat-flux surfaces. A simple remedy to the Leidenfrost effect is provided by polymer nanofiber mats created and deposited by electrospinning on stainless steel surfaces. The influence of nanofiber mats on hydrodynamics and cooling efficiency of single drop impact onto hot surfaces has been investigated experimentally. The evolution of the drops has been recorded by a high-speed complimentary metal-oxide semiconductor camera, whereas the cooling temperature was measured by a thermocouple. A remarkable phenomenon was discovered: a mat of polymer nanofibers electrospun onto a heater surface can completely suppress the Leidenfrost effect, thereby increasing the rate of heat removal from the surface to the liquid drops significantly. The “inverse-Leidenfrost” effect is described qualitatively and quantitatively, providing clear physical reasons for the observed behavior

    Non-isothermal drop impact and evaporation on polymer nanofiber mats

    No full text
    The work describes the experimental and theoretical investigation of water drop impact onto electrospun polymer nanofiber mats deposited on heated stainless-steel foils. The measurements encompass water spreading over and inside the mat, as well as the corresponding thermal field. The results show that the presence of polymer nanofiber mats prevents receding motion of drops after their complete spreading and promotes the moisture spreading inside the mat over a large area of the heater, which facilitates a tenfold enhancement of heat removal as the latent heat of drop evaporation
    corecore