69 research outputs found

    The Toll-Like Receptor Signaling Molecule Myd88 Contributes to Pancreatic Beta-Cell Homeostasis in Response to Injury

    Get PDF
    Commensal flora and pathogenic microbes influence the incidence of diabetes in animal models yet little is known about the mechanistic basis of these interactions. We hypothesized that Myd88, an adaptor molecule in the Toll-like-receptor (TLR) pathway, regulates pancreatic Ξ²-cell function and homeostasis. We first examined Ξ²-cells histologically and found that Myd88βˆ’/βˆ’ mice have smaller islets in comparison to C57Bl/6 controls. Myd88βˆ’/βˆ’ mice were nonetheless normoglycemic both at rest and after an intra-peritoneal glucose tolerance test (IPGTT). In contrast, after low-dose streptozotocin (STZ) challenge, Myd88βˆ’/βˆ’mice had an abnormal IPGTT relative to WT controls. Furthermore, Myd88βˆ’/βˆ’ mice suffer enhanced Ξ²-cell apoptosis and have enhanced hepatic damage with delayed recovery upon low-dose STZ treatment. Finally, we treated WT mice with broad-spectrum oral antibiotics to deplete their commensal flora. In WT mice, low dose oral lipopolysaccharide, but not lipotichoic acid or antibiotics alone, strongly promoted enhanced glycemic control. These data suggest that Myd88 signaling and certain TLR ligands mediate a homeostatic effect on Ξ²-cells primarily in the setting of injury

    Multizone Paper Platform for 3D Cell Cultures

    Get PDF
    In vitro 3D culture is an important model for tissues in vivo. Cells in different locations of 3D tissues are physiologically different, because they are exposed to different concentrations of oxygen, nutrients, and signaling molecules, and to other environmental factors (temperature, mechanical stress, etc). The majority of high-throughput assays based on 3D cultures, however, can only detect the average behavior of cells in the whole 3D construct. Isolation of cells from specific regions of 3D cultures is possible, but relies on low-throughput techniques such as tissue sectioning and micromanipulation. Based on a procedure reported previously (β€œcells-in-gels-in-paper” or CiGiP), this paper describes a simple method for culture of arrays of thin planar sections of tissues, either alone or stacked to create more complex 3D tissue structures. This procedure starts with sheets of paper patterned with hydrophobic regions that form 96 hydrophilic zones. Serial spotting of cells suspended in extracellular matrix (ECM) gel onto the patterned paper creates an array of 200 micron-thick slabs of ECM gel (supported mechanically by cellulose fibers) containing cells. Stacking the sheets with zones aligned on top of one another assembles 96 3D multilayer constructs. De-stacking the layers of the 3D culture, by peeling apart the sheets of paper, β€œsections” all 96 cultures at once. It is, thus, simple to isolate 200-micron-thick cell-containing slabs from each 3D culture in the 96-zone array. Because the 3D cultures are assembled from multiple layers, the number of cells plated initially in each layer determines the spatial distribution of cells in the stacked 3D cultures. This capability made it possible to compare the growth of 3D tumor models of different spatial composition, and to examine the migration of cells in these structures

    Quantitative Stereology for Microstructural Analysis

    No full text
    • …
    corecore