1,281 research outputs found

    Further Results on Performance Analysis for Compressive Sensing Using Expander Graphs

    Get PDF
    Compressive sensing is an emerging technology which can recover a sparse signal vector of dimension n via a much smaller number of measurements than n. In this paper, we will give further results on the performance bounds of compressive sensing. We consider the newly proposed expander graph based compressive sensing schemes and show that, similar to the l_1 minimization case, we can exactly recover any k-sparse signal using only O(k log(n)) measurements, where k is the number of nonzero elements. The number of computational iterations is of order O(k log(n)), while each iteration involves very simple computational steps

    A new exact closest lattice point search algorithm using linear constraints

    Get PDF
    The problem of finding the closest lattice point arises in several communications scenarios and is known to be NP-hard. We propose a new closest lattice point search algorithm which utilizes a set of new linear inequality constraints to reduce the search of the closest lattice point to the intersection of a polyhedron and a sphere. This set of linear constraints efficiently leverage the geometric structure of the lattice to reduce considerably the number of points that must be visited. Simulation results verify that this algorithm offers substantial computational savings over standard sphere decoding when the dimension of the problem is large

    Efficient Compressive Sensing with Deterministic Guarantees Using Expander Graphs

    Get PDF
    Compressive sensing is an emerging technology which can recover a sparse signal vector of dimension n via a much smaller number of measurements than n. However, the existing compressive sensing methods may still suffer from relatively high recovery complexity, such as O(n^3), or can only work efficiently when the signal is super sparse, sometimes without deterministic performance guarantees. In this paper, we propose a compressive sensing scheme with deterministic performance guarantees using expander-graphs-based measurement matrices and show that the signal recovery can be achieved with complexity O(n) even if the number of nonzero elements k grows linearly with n. We also investigate compressive sensing for approximately sparse signals using this new method. Moreover, explicit constructions of the considered expander graphs exist. Simulation results are given to show the performance and complexity of the new method

    On sharp performance bounds for robust sparse signal recoveries

    Get PDF
    It is well known in compressive sensing that l_1 minimization can recover the sparsest solution for a large class of underdetermined systems of linear equations, provided the signal is sufficiently sparse. In this paper, we compute sharp performance bounds for several different notions of robustness in sparse signal recovery via l_1 minimization. In particular, we determine necessary and sufficient conditions for the measurement matrix A under which l_1 minimization guarantees the robustness of sparse signal recovery in the "weak", "sectional" and "strong" (e.g., robustness for "almost all" approximately sparse signals, or instead for "all" approximately sparse signals). Based on these characterizations, we are able to compute sharp performance bounds on the tradeoff between signal sparsity and signal recovery robustness in these various senses. Our results are based on a high-dimensional geometrical analysis of the null-space of the measurement matrix A. These results generalize the thresholds results for purely sparse signals and also present generalized insights on l_1 minimization for recovering purely sparse signals from a null-space perspective
    • 

    corecore