7,858 research outputs found

    Microbial diversity and biogenic methane potential of a thermogenic-gas coal mine

    No full text
    The microbial communities and biogenic methane potential of a gas coal mine were investigated by cultivation-independent and cultivation-dependent approaches. Stable carbon isotopic analysis indicated that in situ methane in the coal mine was dominantly of a thermogenic origin. However, a high level of diversity of bacteria and methanogens that were present in the coal mine was revealed by 454 pyrosequencing, and included various fermentative bacteria in the phyla of Actinobacteria, Bacteroidetes, Firmicutes, and Proteobacteria, and acetotrophic, hydrogenotrophic, and methylotrophic methanogens. Methane was produced in enrichments of mine water samples supplemented with acetate under laboratory conditions. The microbial flora obtained from the enrichments could stimulate methane formation from coal samples. 16S rRNA gene clone library analysis indicated that the microbial community from coal cultivation samples supplemented with the enriched microbial consortium was dominated by the anaerobic fermentative Clostridiales and facultative acetoclastic Methanosarcina. This study suggests that the biogenic methane potential in the thermogenic-gas coal mine could be stimulated by the indigenous microorganisms

    Superconducting proximity effect to the block antiferromagnetism in Ky_{y}Fe2−x_{2-x}Se2_{2}

    Get PDF
    Recent discovery of superconducting (SC) ternary iron selenides has block antiferromagentic (AFM) long range order. Many experiments show possible mesoscopic phase separation of the superconductivity and antiferromagnetism, while the neutron experiment reveals a sizable suppression of magnetic moment due to the superconductivity indicating a possible phase coexistence. Here we propose that the observed suppression of the magnetic moment may be explained due to the proximity effect within a phase separation scenario. We use a two-orbital model to study the proximity effect on a layer of block AFM state induced by neighboring SC layers via an interlayer tunneling mechanism. We argue that the proximity effect in ternary Fe-selenides should be large because of the large interlayer coupling and weak electron correlation. The result of our mean field theory is compared with the neutron experiments semi-quantitatively. The suppression of the magnetic moment due to the SC proximity effect is found to be more pronounced in the d-wave superconductivity and may be enhanced by the frustrated structure of the block AFM state.Comment: 6 pages, 6 figure

    The Wigner solution of quark gap equation at nonzero current quark mass and partial restoration of chiral symmetry at finite chemical potential

    Full text link
    According to the generally accepted phase diagram of QCD, at low temperature and high baryon number density the chiral phase transition of QCD is of first order and the co-existence of the Nambu-Goldstone phase and the Wigner phase should appear. This is in conflict with the usual claim that the quark gap equation has no Wigner solution in the case of nonzero current quark mass. In this paper we analyze the reason why the Wigner solution does not exist in the usual treatment and try to propose a new approach to discuss this question. As a first step, we adopt a modified Nambu-Jona-Lasinio (NJL) model to study the Wigner solution at finite current quark mass. We then generalize this approach to the case of finite chemical potential and discuss partial restoration of chiral symmetry at finite chemical potential and compare our results with those in the normal NJL model.Comment: 7 pages, 5 figures, and 1 table, discussion at finite chemical potential adde

    Bioinspired broadband antireflection coatings on GaSb

    Get PDF
    We report an inexpensive yet scalable templating technique for fabricating moth-eye antireflection gratings on gallium antimonide substrates. Non-close-packed colloidal monolayers are utilized as etching masks to pattern subwavelength-structured nipple arrays on GaSb. The resulting gratings exhibit superior broadband antireflection properties and thermal stability than conventional multilayer dielectric coatings. The specular reflection of the templated nipple arrays match with the theoretical predictions using a rigorous coupled-wave analysis model. The effect of the nipple shape and size on the antireflection properties has also been investigated by the same model. These biomimetic coatings are of great technological importance in developing efficient thermophotovoltaic cells

    Theory for charge and orbital density-wave states in manganite La0.5_{0.5}Sr1.5_{1.5}MnO4_4

    Get PDF
    We investigate the high temperature phase of layered manganites, and demonstrate that the charge-orbital phase transition without magnetic order in La0.5_{0.5}Sr1.5_{1.5}MnO4_4 can be understood in terms of the density wave instability. The orbital ordering is found to be induced by the nesting between segments of Fermi surface with different orbital characters. The simultaneous charge and orbital orderings are elaborated with a mean field theory. The ordered orbitals are shown to be dx2−y2±d3z2−r2d_{x^2-y^2} \pm d_{3z^2-r^2}.Comment: published versio
    • 

    corecore