29,658 research outputs found
Enhancement of parametric pumping due to Andreev reflection
We report properties of parametric electron pumping in the presence of a
superconducting lead. Due to a constructive interference between the direct
reflection and the multiple Andreev reflection, the pumped current is greatly
enhanced. For both quantum point contacts and double barrier structures at
resonance, we obtain exact solutions in the weak pumping regime showing that
, which should be compared with the result of conductance
. Numerical results are also provided for the strong pumping
regime showing interesting Andreev assisted pumping behaviour
Temporal effects in trend prediction: identifying the most popular nodes in the future
Prediction is an important problem in different science domains. In this
paper, we focus on trend prediction in complex networks, i.e. to identify the
most popular nodes in the future. Due to the preferential attachment mechanism
in real systems, nodes' recent degree and cumulative degree have been
successfully applied to design trend prediction methods. Here we took into
account more detailed information about the network evolution and proposed a
temporal-based predictor (TBP). The TBP predicts the future trend by the node
strength in the weighted network with the link weight equal to its exponential
aging. Three data sets with time information are used to test the performance
of the new method. We find that TBP have high general accuracy in predicting
the future most popular nodes. More importantly, it can identify many potential
objects with low popularity in the past but high popularity in the future. The
effect of the decay speed in the exponential aging on the results is discussed
in detail
The second order nonlinear conductance of a two-dimensional mesoscopic conductor
We have investigated the weakly non-linear quantum transport properties of a
two-dimensional quantum conductor. We have developed a numerical scheme which
is very general for this purpose. The nonlinear conductance is computed by
explicitly evaluating the various partial density of states, the sensitivity
and the characteristic potential. Interesting spatial structure of these
quantities are revealed. We present detailed results concerning the crossover
behavior of the second order nonlinear conductance when the conductor changes
from geometrically symmetrical to asymmetrical. Other issues of interests such
as the gauge invariance are also discussed.Comment: LaTe
- β¦