8,917 research outputs found

    The "universal property" of Horizon Entropy Sum of Black Holes in Four Dimensional Asymptotical (anti-)de-Sitter Spacetime Background

    Get PDF
    We present a new ``universal property'' of entropy, that is the ``entropy sum'' relation of black holes in four dimensional (anti-)de-Sitter asymptotical background. They depend only on the cosmological constant with the necessary effect of the un-physical ``virtual'' horizon included in the spacetime where only the cosmological constant, mass of black hole, rotation parameter and Maxwell field exist. When there is more extra matter field in the spacetime, one will find the ``entropy sum'' is also dependent of the strength of these extra matter field. For both cases, we conclude that the ``entropy sum'' does not depend on the conserved charges MM, QQ and JJ, while it does depend on the property of background spacetime. We will mainly test the ``entropy sum'' relation in static, stationary black hole and some black hole with extra matter source (scalar hair and higher curvature) in the asymptotical (anti-)de-sitter spacetime background. Besides, we point out a newly found counter example of the mass independence of the ''entropy product'' relation in the spacetime with extra scalar hair case, while the ``entropy sum'' relation still holds. These result are indeed suggestive to some underlying microscopic mechanism. Moreover, the cosmological constant and extra matter field dependence of the ``entropy sum'' of all horizon seems to reveal that ``entropy sum'' is more general as it is only related to the background field. For the case of asymptotical flat spacetime without any matter source, we give a note for the Kerr black hole case in appendix. One will find only mass dependence of ``entropy sum'' appears. It makes us believe that, considering the dependence of ``entropy sum'', the mass background field may be regarded as the next order of cosmological constant background field and extra matter field.Comment: 14 pages, no figures, JHEP forma

    Thermodynamic relations for entropy and temperature of multi-horizons black holes

    Full text link
    We present some entropy and temperature relations of multi-horizons, even including the "virtual" horizon. These relations are related to product, division and sum of entropy and temperature of multi-horizons. We obtain the additional thermodynamic relations of both static and rotating black holes in three and four dimensional (A)dS spacetime. Especially, a new dimensionless, charges-independence and T+S+=Tβˆ’Sβˆ’T_+S_+=T_-S_- like relation is presented. This relation does not depend on the mass, electric charge, angular momentum and cosmological constant, as it is always a constant. These relations lead us to get some interesting thermodynamic bound of entropy and temperature, including the Penrose inequality which is the first geometrical inequality of black holes. Besides, based on these new relations, one can obtain the first law of thermodynamics and Smarr relation for all horizons of black hole.Comment: 12 pages, no figures, title changed, references adde

    Nuclear modification of high-p_T hadron spectra in p+A collisions at LHC

    Full text link
    Multiple parton scatterings in high-energy p+A collisions involve multi-parton correlation inside the projectile and color coherence of multiple jets which will lead to nuclear modification of final hadron spectra relative to that in p+p collisions. Such modification of final hadron spectra in p+A collisions is studied within HIJING 2.1 model which includes initial parton shadowing, transverse momentum broadening, parton flavor and momentum correlation inside the projectile through flavor and momentum conservation and fragmentation of multiple jets. They are shown to modify the partonic flavor content of final jets and momentum spectra of final hadrons in p+A collisions at the Large Hadron Collider.Comment: 4 pages in RevTex with 4 figures, LHC pPb collision energy is changed to 5TeV and additional figures are adde

    Hadron production in p+p, p+Pb, and Pb+Pb collisions with the HIJING 2.0 model at energies available at the CERN Large Hadron Collider

    Full text link
    The HIJING (Heavy-ion Jet Interaction Generator) Monte Carlo model is updated with the latest parton distributions functions (PDF) and new set of the parameters in the two-component mini-jet model that controls total p+pp+p cross section and the central pseudorapity density. We study hadron spectra and multiplicity distributions using the HIJING 2.0 model and compare to recent experimental data from p+pp+p collisions at the LHC energies. We also give predictions of hadron production in p+pp+p, p+Pbp+Pb and Pb+PbPb+Pb collisions at the full LHC energy.Comment: 9 pages in RevTex with 11 postscript figures, updated with new results and some new data are included in comparison. The title is changed in this versio

    Hybrid Transceiver Optimization for Multi-Hop Communications

    Full text link
    Multi-hop communication with the aid of large-scale antenna arrays will play a vital role in future emergence communication systems. In this paper, we investigate amplify-and-forward based and multiple-input multiple-output assisted multi-hop communication, in which all nodes employ hybrid transceivers. Moreover, channel errors are taken into account in our hybrid transceiver design. Based on the matrix-monotonic optimization framework, the optimal structures of the robust hybrid transceivers are derived. By utilizing these optimal structures, the optimizations of analog transceivers and digital transceivers can be separated without loss of optimality. This fact greatly simplifies the joint optimization of analog and digital transceivers. Since the optimization of analog transceivers under unit-modulus constraints is non-convex, a projection type algorithm is proposed for analog transceiver optimization to overcome this difficulty. Based on the derived analog transceivers, the optimal digital transceivers can then be derived using matrix-monotonic optimization. Numeral results obtained demonstrate the performance advantages of the proposed hybrid transceiver designs over other existing solutions.Comment: 32 pages, 6 figures. This manuscript has been submitted to IEEE Journal on Selected Areas in Communications (special issue on Multiple Antenna Technologies for Beyond 5G
    • …
    corecore