99,811 research outputs found

    LAS-CDMA using Various Time Domain Chip-Waveforms

    No full text
    LAS CDMA exhibits a significantly better performance than that of classic random code based DS-CDMA, when operating in a quasi-synchronous scenario. Classic frequency-domain raised cosine Nyquist filtering is known to show the best possible performance, but its complexity may be excessive in highchip-rate systems. Hence in these systems often low-complexity time-domain waveform shaping is considered. Motivated by this fact, the achievable performance of LAS-CDMA is investigated in conjunction with three different time-limited chipwaveforms, which exhibit an infinite bandwidth. The raised cosine time-domain waveform based DS-CDMA system is shown to achieve the best performance in the context of a strictly band-limited system, because its frequency-domain spectral side-lobes are relatively low

    On the Uplink Performance of Asynchronous LAS-CDMA

    No full text
    In this paper closed-form formulae are derived for characterizing the BER performance of Large Area Synchronous CDMA (LAS-CDMA) as a function of both the number of resolvable paths Lp and the maximum delay difference Ļ„max, as well as the number of users K, when communicating over a Nakagami-m fading channel. Moreover, we comparatively studies the performance of LAS-CDMA and the traditional random code based DS-CDMA

    Coding against Spreading Gain Optimization of Nonbinary BCH Coded CDMA System

    No full text
    The joint analytical optimisation of the spreading gain and coding gain of nonbinary BCH coded CDMA communication systems is considered in both single-cell and multi-cell scenarios. Furthermore, two types of detectors were employed, namely the minimum mean square error multiuser detector and the classic single-user matched filter detector. It is shown that the optimum coding rate varied over a wide range

    Godel Metrics with Chronology Protection in Horndeski Gravities

    Full text link
    G\"odel universe, one of the most interesting exact solutions predicted by General Relativity, describes a homogeneous rotating universe containing naked closed time-like curves (CTCs). It was shown that such CTCs are the consequence of the null energy condition in General Relativity. In this paper, we show that the G\"odel-type metrics with chronology protection can emerge in Einstein-Horndeski gravity. We construct such exact solutions also in Einstein-Horndeski-Maxwell and Einstein-Horndeski-Proca theories.Comment: Latex, 11 pages, references adde

    Stability of spikes in the shadow Gierer-Meinhardt system with Robin boundary conditions

    Get PDF
    We consider the shadow system of the Gierer-Meinhardt system in a smooth bounded domain RN,At=2Aāˆ’A+,x, t>0, ||t=āˆ’||+Ardx, t>0 with the Robin boundary condition +aAA=0, x, where aA>0, the reaction rates (p,q,r,s) satisfy 1<p<()+, q>0, r>0, s0, 1<<+, the diffusion constant is chosen such that 1, and the time relaxation constant is such that 0. We rigorously prove the following results on the stability of one-spike solutions: (i) If r=2 and 1<p<1+4/N or if r=p+1 and 1<p<, then for aA>1 and sufficiently small the interior spike is stable. (ii) For N=1 if r=2 and 1<p3 or if r=p+1 and 1<p<, then for 0<aA<1 the near-boundary spike is stable. (iii) For N=1 if 3<p<5 and r=2, then there exist a0(0,1) and Āµ0>1 such that for a(a0,1) and Āµ=2q/(s+1)(pāˆ’1)(1,Āµ0) the near-boundary spike solution is unstable. This instability is not present for the Neumann boundary condition but only arises for the Robin boundary condition. Furthermore, we show that the corresponding eigenvalue is of order O(1) as 0. Ā©2007 American Institute of Physic
    • ā€¦
    corecore