6,506 research outputs found

    Quantum phase transition in the one-dimensional period-two and uniform compass model

    Full text link
    Quantum phase transition in the one-dimensional period-two and uniform quantum compass model are studied by using the pseudo-spin transformation method and the trace map method. The exact solutions are presented, the fidelity, the nearest-neighbor pseudo-spin entanglement, spin and pseudo-spin correlation functions are then calculated. At the critical point, the fidelity and its susceptibility change substantially, the gap of pseudo-spin concurrence is observed, which scales as 1/N1/N (N is system size). The spin correlation functions show smooth behavior around the critical point. In the period-two chain, the pseudo-spin correlation functions exhibit a oscillating behavior, which is absent in the unform chain. The divergent correlation length at the critical point is demonstrated in the general trend for both cases.Comment: 5 pages, 6 figure

    The global geometrical property of jet events in high-energy nuclear collisions

    Full text link
    We present the first theoretical study of medium modifications of the global geometrical pattern, i.e., transverse sphericity (S⊥S_{\perp}) distribution of jet events with parton energy loss in relativistic heavy-ion collisions. In our investigation, POWHEG+PYTHIA is employed to make an accurate description of transverse sphericity in the p+p baseline, which combines the next-to-leading order (NLO) pQCD calculations with the matched parton shower (PS). The Linear Boltzmann Transport (LBT) model of the parton energy loss is implemented to simulate the in-medium evolution of jets. We calculate the event normalized transverse sphericity distribution in central Pb+Pb collisions at the LHC, and give its medium modifications. An enhancement of transverse sphericity distribution at small S⊥S_{\perp} region but a suppression at large S⊥S_{\perp} region are observed in A+A collisions as compared to their p+p references, which indicates that in overall the geometry of jet events in Pb+Pb becomes more pencil-like. We demonstrate that for events with 2 jets in the final-state of heavy-ion collisions, the jet quenching makes the geometry more sphere-like with medium-induced gluon radiation. However, for events with ≥3\ge 3~jets, parton energy loss in the QCD medium leads to the events more pencil-like due to jet number reduction, where less energetic jets may lose their energies and then fall off the jet selection kinematic cut. These two effects offset each other and in the end result in more jetty events in heavy-ion collisions relative to that in p+p.Comment: 9 pages, 9 figure
    • …
    corecore