22,315 research outputs found

    Interatomic collisions in two-dimensional and quasi-two-dimensional confinements with spin-orbit coupling

    Full text link
    We investigate the low-energy scattering and bound states of two two-component fermionic atoms in pure two-dimensional (2D) and quasi-2D confinements with Rashba spin-orbit coupling (SOC). We find that the SOC qualitatively changes the behavior of the 2D scattering amplitude in the low-energy limit. For quasi-2D systems we obtain the analytic expression for the effective-2D scattering amplitude and the algebraic equations for the two-atom bound state energy. Based on these results, we further derive the effective 2D interaction potential between two ultracold atoms in the quasi-2D confinement with Rashba SOC. These results are crucial for the control of the 2D effective physics in quasi-2D geometry via the confinement intensity and the atomic three-dimensional scattering length.Comment: 13pages, 5 figure

    AutoAccel: Automated Accelerator Generation and Optimization with Composable, Parallel and Pipeline Architecture

    Full text link
    CPU-FPGA heterogeneous architectures are attracting ever-increasing attention in an attempt to advance computational capabilities and energy efficiency in today's datacenters. These architectures provide programmers with the ability to reprogram the FPGAs for flexible acceleration of many workloads. Nonetheless, this advantage is often overshadowed by the poor programmability of FPGAs whose programming is conventionally a RTL design practice. Although recent advances in high-level synthesis (HLS) significantly improve the FPGA programmability, it still leaves programmers facing the challenge of identifying the optimal design configuration in a tremendous design space. This paper aims to address this challenge and pave the path from software programs towards high-quality FPGA accelerators. Specifically, we first propose the composable, parallel and pipeline (CPP) microarchitecture as a template of accelerator designs. Such a well-defined template is able to support efficient accelerator designs for a broad class of computation kernels, and more importantly, drastically reduce the design space. Also, we introduce an analytical model to capture the performance and resource trade-offs among different design configurations of the CPP microarchitecture, which lays the foundation for fast design space exploration. On top of the CPP microarchitecture and its analytical model, we develop the AutoAccel framework to make the entire accelerator generation automated. AutoAccel accepts a software program as an input and performs a series of code transformations based on the result of the analytical-model-based design space exploration to construct the desired CPP microarchitecture. Our experiments show that the AutoAccel-generated accelerators outperform their corresponding software implementations by an average of 72x for a broad class of computation kernels

    Pion transverse-momentum spectrum and elliptic anisotropy of partially coherent source

    Full text link
    In this letter, we study the pion momentum distribution of a coherent source and investigate the influences of coherent emission on the pion transverse-momentum (pTp_T) spectrum and elliptic anisotropy. With a partially coherent source, constructed by a conventional viscous hydrodynamics model (chaotic part) and a parameterized expanding coherent source model, we reproduce the pion pTp_T spectrum and elliptic anisotropy coefficient v2(pT)v_2(p_T) in the peripheral Pb-Pb collisions at sNN=2.76\sqrt{s_{NN}}=2.76 TeV. It is found that the influences of coherent emission on the pion pTp_T spectrum and v2(pT)v_2(p_T) are related to the initial size and shape of the coherent source, largely due to the interference effect. However, the effect of source dynamical evolution on coherent emission is relatively small. The results of the partially coherent source with 33% coherent emission and 67% chaotic emission are consistent with the experimental measurements of the pion pTp_T spectrum, v2(pT)v_2(p_T), and especially four-pion Bose-Einstein correlations.Comment: 8 pages, 4 figure

    Thermodynamics of pairing transition in hot nuclei

    Full text link
    The pairing correlations in hot nuclei 162^{162}Dy are investigated in terms of the thermodynamical properties by covariant density functional theory. The heat capacities CVC_V are evaluated in the canonical ensemble theory and the paring correlations are treated by a shell-model-like approach, in which the particle number is conserved exactly. A S-shaped heat capacity curve, which agrees qualitatively with the experimental data, has been obtained and analyzed in details. It is found that the one-pair-broken states play crucial roles in the appearance of the S shape of the heat capacity curve. Moreover, due to the effect of the particle-number conservation, the pairing gap varies smoothly with the temperature, which indicates a gradual transition from the superfluid to the normal state.Comment: 13 pages, 4 figure
    • …
    corecore