908 research outputs found

    Molecular diagnosis of childhood tuberculosis and infection with Bacilli Calmette-Guerin in Taiwan

    Get PDF
    Molecular techniques along with clinical evaluation have been demonstrated to be effective for differentiating childhood tuberculosis (TB), and for establishing an enhanced survey of adverse reactions of Bacilli Calmette-Guerin vaccination in Taiwan. Future development and evaluation of new diagnostics should be prioritized in strengthening the management of childhood TB

    The Emergent Landscape of Detecting EGFR Mutations Using Circulating Tumor DNA in Lung Cancer.

    Get PDF
    The advances in targeted therapies for lung cancer are based on the evaluation of specific gene mutations especially the epidermal growth factor receptor (EGFR). The assays largely depend on the acquisition of tumor tissue via biopsy before the initiation of therapy or after the onset of acquired resistance. However, the limitations of tissue biopsy including tumor heterogeneity and insufficient tissues for molecular testing are impotent clinical obstacles for mutation analysis and lung cancer treatment. Due to the invasive procedure of tissue biopsy and the progressive development of drug-resistant EGFR mutations, the effective initial detection and continuous monitoring of EGFR mutations are still unmet requirements. Circulating tumor DNA (ctDNA) detection is a promising biomarker for noninvasive assessment of cancer burden. Recent advancement of sensitive techniques in detecting EGFR mutations using ctDNA enables a broad range of clinical applications, including early detection of disease, prediction of treatment responses, and disease progression. This review not only introduces the biology and clinical implementations of ctDNA but also includes the updating information of recent advancement of techniques for detecting EGFR mutation using ctDNA in lung cancer

    Tokyo-172 BCG Vaccination Complications, Taiwan

    Get PDF

    Modeling Service Experience Optimism

    Get PDF
    This research proposes a novel notion called ā€œservice experience optimism (SEO)ā€ by combining the perception of positive and negative dimensions. There are two goals for this research; first one is to propose a novel model named ā€œservice experience optimismā€ to quantify the value of service experience. The second goal is to help firms adjust service operations based on customer perception. There are three positive factors and two negative factors to assess the value of a service experience, we use multi attribute utility theory (MAUT) to calculate the utility which customer feel at the service experience. The contribution of this research is SEO provide a concrete value of the perception of service experience to customer, and let customer to evaluate if the service is worth to go again

    Signal transducer and activator of transcription 3 activation up-regulates interleukin-6 autocrine production: a biochemical and genetic study of established cancer cell lines and clinical isolated human cancer cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Spontaneous interleukin-6 (IL-6) production has been observed in various tumors and implicated in the pathogenesis, progression and drug resistance in cancer. However, the regulation of IL-6 autocrine production in cancer cells is not fully understood. IL-6 is auto-regulated in many types of cell. Two of the three major downstream pathways of IL-6, MEK/extracellular signal-related kinase (Erk) pathway and phosphatidylinositol 3-kinase (PI3-K)/Akt pathway, have been shown to regulate IL-6 expression through the activation of AP-1 and NF-ĪŗB. However, it is not clear what the role of Janus kinase (Jak) 2/signal transducer and activator of transcription (Stat) 3 pathway. This study was designed to determine the role of Jak2/Stat3 pathway in the regulation of IL-6 autocrine production in cancer cells.</p> <p>Results</p> <p>Inhibitors of Jak2/Stat3, MEK/Erk and PI3-K/Akt pathways down-regulated IL-6 secretion in the lung adenocarcinoma PC14PE6/AS2 (AS2) cells, which spontaneously secreted IL-6 and possessed constitutively activated Stat3. Transfection with dominant-negative Stat3, Stat3 siRNA, or Stat3 shRNA decreased IL-6 expression in AS2 cells. Conversely, transfection with constitutively-activated Stat3 increased the production of IL-6. In AS2 derived cells, resistance to paclitaxel was positively correlated with Stat3 activation status and the expression of IL-6, which is commonly secreted in drug resistant cancer cells. The pharmacological inhibition of NF-ĪŗB, PI3-K/Akt and MEK/Erk and the pharmacological inhibition and genetic inhibition (Stat3 siRNA) of Jak2/Stat3 pathway decreased IL-6 autocrine production in various drug resistant cancer cell lines and similarly decreased IL-6 autocrine production in clinically isolated lung cancer cells.</p> <p>Conclusions</p> <p>This study is the first to directly address the role Stat3 plays on the autocrine production of IL-6, which occurs through a positive-feedback loop. Our biochemical and genetic studies clearly demonstrated that Jak2/Stat3, in combination with other IL-6 downstream pathways, contributed frequently and substantially to IL-6 autocrine production in a broad spectrum of cancer cell lines as well as in clinical cancer samples. Our findings suggest that Stat3 could potentially be regulated to suppress IL-6 autocrine production in cancer cells to inhibit the progression of cancer and reduce drug resistance.</p

    Signal transducer and activator of transcription 3 activation up-regulates interleukin-6 autocrine production: a biochemical and genetic study of established cancer cell lines and clinical isolated human cancer cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Spontaneous interleukin-6 (IL-6) production has been observed in various tumors and implicated in the pathogenesis, progression and drug resistance in cancer. However, the regulation of IL-6 autocrine production in cancer cells is not fully understood. IL-6 is auto-regulated in many types of cell. Two of the three major downstream pathways of IL-6, MEK/extracellular signal-related kinase (Erk) pathway and phosphatidylinositol 3-kinase (PI3-K)/Akt pathway, have been shown to regulate IL-6 expression through the activation of AP-1 and NF-ĪŗB. However, it is not clear what the role of Janus kinase (Jak) 2/signal transducer and activator of transcription (Stat) 3 pathway. This study was designed to determine the role of Jak2/Stat3 pathway in the regulation of IL-6 autocrine production in cancer cells.</p> <p>Results</p> <p>Inhibitors of Jak2/Stat3, MEK/Erk and PI3-K/Akt pathways down-regulated IL-6 secretion in the lung adenocarcinoma PC14PE6/AS2 (AS2) cells, which spontaneously secreted IL-6 and possessed constitutively activated Stat3. Transfection with dominant-negative Stat3, Stat3 siRNA, or Stat3 shRNA decreased IL-6 expression in AS2 cells. Conversely, transfection with constitutively-activated Stat3 increased the production of IL-6. In AS2 derived cells, resistance to paclitaxel was positively correlated with Stat3 activation status and the expression of IL-6, which is commonly secreted in drug resistant cancer cells. The pharmacological inhibition of NF-ĪŗB, PI3-K/Akt and MEK/Erk and the pharmacological inhibition and genetic inhibition (Stat3 siRNA) of Jak2/Stat3 pathway decreased IL-6 autocrine production in various drug resistant cancer cell lines and similarly decreased IL-6 autocrine production in clinically isolated lung cancer cells.</p> <p>Conclusions</p> <p>This study is the first to directly address the role Stat3 plays on the autocrine production of IL-6, which occurs through a positive-feedback loop. Our biochemical and genetic studies clearly demonstrated that Jak2/Stat3, in combination with other IL-6 downstream pathways, contributed frequently and substantially to IL-6 autocrine production in a broad spectrum of cancer cell lines as well as in clinical cancer samples. Our findings suggest that Stat3 could potentially be regulated to suppress IL-6 autocrine production in cancer cells to inhibit the progression of cancer and reduce drug resistance.</p
    • ā€¦
    corecore