15,557 research outputs found
Clothing Co-Parsing by Joint Image Segmentation and Labeling
This paper aims at developing an integrated system of clothing co-parsing, in
order to jointly parse a set of clothing images (unsegmented but annotated with
tags) into semantic configurations. We propose a data-driven framework
consisting of two phases of inference. The first phase, referred as "image
co-segmentation", iterates to extract consistent regions on images and jointly
refines the regions over all images by employing the exemplar-SVM (E-SVM)
technique [23]. In the second phase (i.e. "region co-labeling"), we construct a
multi-image graphical model by taking the segmented regions as vertices, and
incorporate several contexts of clothing configuration (e.g., item location and
mutual interactions). The joint label assignment can be solved using the
efficient Graph Cuts algorithm. In addition to evaluate our framework on the
Fashionista dataset [30], we construct a dataset called CCP consisting of 2098
high-resolution street fashion photos to demonstrate the performance of our
system. We achieve 90.29% / 88.23% segmentation accuracy and 65.52% / 63.89%
recognition rate on the Fashionista and the CCP datasets, respectively, which
are superior compared with state-of-the-art methods.Comment: 8 pages, 5 figures, CVPR 201
- …