10,255 research outputs found

    Renormalization of trace distance and multipartite entanglement close to the quantum phase transitions of one- and two-dimensional spin-chain systems

    Full text link
    We investigate the quantum phase transitions of spin systems in one and two dimensions by employing trace distance and multipartite entanglement along with real-space quantum renormalization group method. As illustration examples, a one-dimensional and a two-dimensional XYXY models are considered. It is shown that the quantum phase transitions of these spin-chain systems can be revealed by the singular behaviors of the first derivatives of renormalized trace distance and multipartite entanglement in the thermodynamics limit. Moreover, we find the renormalized trace distance and multipartite entanglement obey certain universal exponential-type scaling laws in the vicinity of the quantum critical points

    Negative refraction index of the quantum lossy left-handed transmission lines affected by the displaced squeezed Fock state and dissipation

    Full text link
    Quantum lossy left-handed transmission lines (LHTLs) are central to the miniaturized application in microwave band. This work discusses the NRI of the quantized lossy LHTLs in the presence of the resistance and the conductance in a displaced squeezed Fock state (DSFS). And the results show some novel specific quantum characteristics of NRI caused by the DSFS and dissipation, which may be significant for its miniaturized application in a suit of novel microwave devices.Comment: 11 pages,5 figure

    Practical Block-wise Neural Network Architecture Generation

    Full text link
    Convolutional neural networks have gained a remarkable success in computer vision. However, most usable network architectures are hand-crafted and usually require expertise and elaborate design. In this paper, we provide a block-wise network generation pipeline called BlockQNN which automatically builds high-performance networks using the Q-Learning paradigm with epsilon-greedy exploration strategy. The optimal network block is constructed by the learning agent which is trained sequentially to choose component layers. We stack the block to construct the whole auto-generated network. To accelerate the generation process, we also propose a distributed asynchronous framework and an early stop strategy. The block-wise generation brings unique advantages: (1) it performs competitive results in comparison to the hand-crafted state-of-the-art networks on image classification, additionally, the best network generated by BlockQNN achieves 3.54% top-1 error rate on CIFAR-10 which beats all existing auto-generate networks. (2) in the meanwhile, it offers tremendous reduction of the search space in designing networks which only spends 3 days with 32 GPUs, and (3) moreover, it has strong generalizability that the network built on CIFAR also performs well on a larger-scale ImageNet dataset.Comment: Accepted to CVPR 201
    • …
    corecore