3,788 research outputs found

    First Digit Distributions of Gamma-Ray Bursts

    Full text link
    The occurrence of the first significant digits from real world sources is usually not equally distributed, but is consistent with a logarithmic distribution instead, known as Benford's law. In this work, we perform a comprehensive investigation on the first digit distributions of the duration, fluence, and energy flux of gamma-ray bursts (GRBs) for the first time. For a complete GRB sample detected by the Fermi satellite, we find that the first digits of the duration and fluence adhere to Benford's law. However, the energy flux shows a significant departure from this law, which may be due to the fact that a considerable part of the energy flux measurements are restricted by lack of spectral information. Based on the conventional duration classification scheme, we also check if the durations and fluences of long and short GRBs (with duration T90>2T_{90}>2 s and T90≤2T_{90}\leq2 s, respectively) obey Benford's law. We find that the fluences of both long and short GRBs still agree with the Benford distribution, but their durations do not follow Benford's law. Our results hint that the long--short GRB classification scheme does not directly represent the intrinsic physical classification scheme.Comment: 9 pages, 7 figures, 2 tables, 1 appendix. Accepted for publication in RA

    Growth and characterization of ZnO needles

    Get PDF

    Electronic Structure in Gapped Graphene with Coulomb Potential

    Full text link
    In this paper, we numerically study the bound electron states induced by long range Coulomb impurity in gapped graphene and the quasi-bound states in supercritical region based on the lattice model. We present a detailed comparison between our numerical simulations and the prediction of the continuum model which is described by the Dirac equation in (2+1)-dimensional Quantum Electrodynamics (QED). We also use the Fano's formalism to investigate the quasi-bound state development and design an accessible experiments to test the decay of the supercritical vacuum in the gapped graphene.Comment: 5 page, 4 figure

    Community Detection Using Revised Medoid-Shift Based on KNN

    Full text link
    Community detection becomes an important problem with the booming of social networks. As an excellent clustering algorithm, Mean-Shift can not be applied directly to community detection, since Mean-Shift can only handle data with coordinates, while the data in the community detection problem is mostly represented by a graph that can be treated as data with a distance matrix (or similarity matrix). Fortunately, a new clustering algorithm called Medoid-Shift is proposed. The Medoid-Shift algorithm preserves the benefits of Mean-Shift and can be applied to problems based on distance matrix, such as community detection. One drawback of the Medoid-Shift algorithm is that there may be no data points within the neighborhood region defined by a distance parameter. To deal with the community detection problem better, a new algorithm called Revised Medoid-Shift (RMS) in this work is thus proposed. During the process of finding the next medoid, the RMS algorithm is based on a neighborhood defined by KNN, while the original Medoid-Shift is based on a neighborhood defined by a distance parameter. Since the neighborhood defined by KNN is more stable than the one defined by the distance parameter in terms of the number of data points within the neighborhood, the RMS algorithm may converge more smoothly. In the RMS method, each of the data points is shifted towards a medoid within the neighborhood defined by KNN. After the iterative process of shifting, each of the data point converges into a cluster center, and the data points converging into the same center are grouped into the same cluster

    C2Ideas: Supporting Creative Interior Color Design Ideation with Large Language Model

    Full text link
    Interior color design is a creative process that endeavors to allocate colors to furniture and other elements within an interior space. While much research focuses on generating realistic interior designs, these automated approaches often misalign with user intention and disregard design rationales. Informed by a need-finding preliminary study, we develop C2Ideas, an innovative system for designers to creatively ideate color schemes enabled by an intent-aligned and domain-oriented large language model. C2Ideas integrates a three-stage process: Idea Prompting stage distills user intentions into color linguistic prompts; Word-Color Association stage transforms the prompts into semantically and stylistically coherent color schemes; and Interior Coloring stage assigns colors to interior elements complying with design principles. We also develop an interactive interface that enables flexible user refinement and interpretable reasoning. C2Ideas has undergone a series of indoor cases and user studies, demonstrating its effectiveness and high recognition of interactive functionality by designers.Comment: 26 pages, 11 figure
    • …
    corecore