3,658 research outputs found

    Explainable Recommendation with Personalized Review Retrieval and Aspect Learning

    Full text link
    Explainable recommendation is a technique that combines prediction and generation tasks to produce more persuasive results. Among these tasks, textual generation demands large amounts of data to achieve satisfactory accuracy. However, historical user reviews of items are often insufficient, making it challenging to ensure the precision of generated explanation text. To address this issue, we propose a novel model, ERRA (Explainable Recommendation by personalized Review retrieval and Aspect learning). With retrieval enhancement, ERRA can obtain additional information from the training sets. With this additional information, we can generate more accurate and informative explanations. Furthermore, to better capture users' preferences, we incorporate an aspect enhancement component into our model. By selecting the top-n aspects that users are most concerned about for different items, we can model user representation with more relevant details, making the explanation more persuasive. To verify the effectiveness of our model, extensive experiments on three datasets show that our model outperforms state-of-the-art baselines (for example, 3.4% improvement in prediction and 15.8% improvement in explanation for TripAdvisor)

    Popularity Ratio Maximization: Surpassing Competitors through Influence Propagation

    Full text link
    In this paper, we present an algorithmic study on how to surpass competitors in popularity by strategic promotions in social networks. We first propose a novel model, in which we integrate the Preferential Attachment (PA) model for popularity growth with the Independent Cascade (IC) model for influence propagation in social networks called PA-IC model. In PA-IC, a popular item and a novice item grab shares of popularity from the natural popularity growth via the PA model, while the novice item tries to gain extra popularity via influence cascade in a social network. The {\em popularity ratio} is defined as the ratio of the popularity measure between the novice item and the popular item. We formulate {\em Popularity Ratio Maximization (PRM)} as the problem of selecting seeds in multiple rounds to maximize the popularity ratio in the end. We analyze the popularity ratio and show that it is monotone but not submodular. To provide an effective solution, we devise a surrogate objective function and show that empirically it is very close to the original objective function while theoretically, it is monotone and submodular. We design two efficient algorithms, one for the overlapping influence and non-overlapping seeds (across rounds) setting and the other for the non-overlapping influence and overlapping seed setting, and further discuss how to deal with other models and problem variants. Our empirical evaluation further demonstrates that the proposed PRM-IMM method consistently achieves the best popularity promotion compared to other methods. Our theoretical and empirical analyses shed light on the interplay between influence maximization and preferential attachment in social networks.Comment: 22 pages, 8 figures, to be appear SIGMOD 202

    Deep-Q Learning with Hybrid Quantum Neural Network on Solving Maze Problems

    Full text link
    Quantum computing holds great potential for advancing the limitations of machine learning algorithms to handle higher dimensions of data and reduce overall training parameters in deep learning (DL) models. This study uses a trainable variational quantum circuit (VQC) on a gate-based quantum computing model to investigate the potential for quantum benefit in a model-free reinforcement learning problem. Through a comprehensive investigation and evaluation of the current model and capabilities of quantum computers, we designed and trained a novel hybrid quantum neural network based on the latest Qiskit and PyTorch framework. We compared its performance with a full-classical CNN with and without an incorporated VQC. Our research provides insights into the potential of deep quantum learning to solve a maze problem and, potentially, other reinforcement learning problems. We conclude that reinforcement learning problems can be practical with reasonable training epochs. Moreover, a comparative study of full-classical and hybrid quantum neural networks is discussed to understand these two approaches' performance, advantages, and disadvantages to deep-Q learning problems, especially on larger-scale maze problems larger than 4x4

    Preparing random state for quantum financing with quantum walks

    Full text link
    In recent years, there has been an emerging trend of combining two innovations in computer science and physics to achieve better computation capability. Exploring the potential of quantum computation to achieve highly efficient performance in various tasks is a vital development in engineering and a valuable question in sciences, as it has a significant potential to provide exponential speedups for technologically complex problems that are specifically advantageous to quantum computers. However, one key issue in unleashing this potential is constructing an efficient approach to load classical data into quantum states that can be executed by quantum computers or quantum simulators on classical hardware. Therefore, the split-step quantum walks (SSQW) algorithm was proposed to address this limitation. We facilitate SSQW to design parameterized quantum circuits (PQC) that can generate probability distributions and optimize the parameters to achieve the desired distribution using a variational solver. A practical example of implementing SSQW using Qiskit has been released as open-source software. Showing its potential as a promising method for generating desired probability amplitude distributions highlights the potential application of SSQW in option pricing through quantum simulation.Comment: 11 pages, 7 figure
    • …
    corecore