10,828 research outputs found

    Waiting time distribution of solar energetic particle events modeled with a non-stationary Poisson process

    Full text link
    We present a study of the waiting time distributions (WTDs) of solar energetic particle (SEP) events observed with the spacecraft WINDWIND and GOESGOES. Both the WTDs of solar electron events (SEEs) and solar proton events (SPEs) display a power-law tail ∼Δt−γ\sim \Delta t^{-\gamma}. The SEEs display a broken power-law WTD. The power-law index is γ1=\gamma_{1} = 0.99 for the short waiting times (100 hours). The break of the WTD of SEEs is probably due to the modulation of the corotating interaction regions (CIRs). The power-law index γ∼\gamma \sim 1.82 is derived for the WTD of SPEs that is consistent with the WTD of type II radio bursts, indicating a close relationship between the shock wave and the production of energetic protons. The WTDs of SEP events can be modeled with a non-stationary Poisson process which was proposed to understand the waiting time statistics of solar flares (Wheatland 2000; Aschwanden &\& McTiernan 2010). We generalize the method and find that, if the SEP event rate λ=1/Δt\lambda = 1/\Delta t varies as the time distribution of event rate f(λ)=Aλ−αexp(−βλ)f(\lambda) = A \lambda^{-\alpha}exp(-\beta \lambda), the time-dependent Poisson distribution can produce a power-law tail WTD ∼Δtα−3\sim \Delta t^{\alpha - 3}, where 0≤α<20 \leq \alpha < 2.Comment: 10 pages, 4 figures, accepted for publication in ApJ Letter

    On-chip electro-optic tuning of a lithium niobate microresonator with integrated in-plane microelectrodes

    Full text link
    We demonstrate electro-optic tuning of an on-chip lithium niobate microresonator with integrated in-plane microelectrodes. First two metallic microelectrodes on the substrate were formed via femtosecond laser process. Then a high-Q lithium niobate microresonator located between the microelectrodes was fabricated by femtosecond laser direct writing accompanied by focused ion beam milling. Due to the efficient structure designing, high electro-optical tuning coefficient of 3.41 pm/V was observed.Comment: 6 pages, 3 figure

    Improper Ferroelectric Polarisation in a Perovskite driven by Inter-site Charge Transfer and Ordering

    Get PDF
    It is of great interest to design and make materials in which ferroelectric polarisation is coupled to other order parameters such as lattice, magnetic and electronic instabilities. Such materials will be invaluable in next-generation data storage devices. Recently, remarkable progress has been made in understanding improper ferroelectric coupling mechanisms that arise from lattice and magnetic instabilities. However, although theoretically predicted, a compact lattice coupling between electronic and ferroelectric (polar) instabilities has yet to be realised. Here we report detailed crystallographic studies of a novel perovskite HgA^{\textbf{A}}Mn3A’^{\textbf{A'}}_{3}Mn4B^{\textbf{B}}_{4}O12_{12} that is found to exhibit a polar ground state on account of such couplings that arise from charge and orbital ordering on both the A' and B-sites, which are themselves driven by a highly unusual MnA′^{A'}-MnB^B inter-site charge transfer. The inherent coupling of polar, charge, orbital and hence magnetic degrees of freedom, make this a system of great fundamental interest, and demonstrating ferroelectric switching in this and a host of recently reported hybrid improper ferroelectrics remains a substantial challenge.Comment: 9 pages, 7 figure
    • …
    corecore