50,597 research outputs found

    Exotic QQqˉqˉQQ\bar{q}\bar{q}, QQqˉsˉQQ\bar{q}\bar{s} and QQsˉsˉQQ\bar{s}\bar{s} states

    Full text link
    After constructing the possible JP=0−,0+,1−J^P=0^-, 0^+, 1^- and 1+1^+ QQqˉqˉQQ\bar{q}\bar{q} tetraquark interpolating currents in a systematic way, we investigate the two-point correlation functions and extract the corresponding masses with the QCD sum rule approach. We study the QQqˉqˉQQ\bar{q}\bar{q}, QQqˉsˉQQ\bar{q}\bar{s} and QQsˉsˉQQ\bar{s}\bar{s} systems with various isospins I=0,1/2,1I=0, 1/2, 1. Our numerical analysis indicates that the masses of doubly-bottomed tetraquark states are below the threshold of the two bottom mesons, two bottom baryons and one doubly bottomed baryon plus one anti-nucleon. Very probably these doubly-bottomed tetraquark states are stable.Comment: 37 pages, 2 figure

    Spin-1 charmonium-like states in QCD sum rule

    Full text link
    We study the possible spin-1 charmonium-like states by using QCD sum rule approach. We calculate the two-point correlation functions for all the local form tetraquark interpolating currents with JPC=1−−,1−+,1++J^{PC}=1^{--}, 1^{-+}, 1^{++} and 1+−1^{+-} and extract the masses of the tetraquark charmonium-like states. The mass of the 1−−1^{--} qcqˉcˉqc\bar q\bar c state is 4.6∼4.74.6\sim4.7 GeV, which implies a possible tetraquark interpretation for Y(4660) meson. The masses for both the 1++1^{++} qcqˉcˉqc\bar q\bar c and scsˉcˉsc\bar s\bar c states are 4.0∼4.24.0\sim 4.2 GeV, which is slightly above the mass of X(3872). For the 1−+1^{-+} and 1+−1^{+-} qcqˉcˉqc\bar q\bar c states, the extracted masses are 4.5∼4.74.5\sim4.7 GeV and 4.0∼4.24.0\sim 4.2 GeV respectively.Comment: 7 pages, 2 figures. arXiv admin note: substantial text overlap with arXiv:1010.339

    Possible JPC=0−−J^{PC} = 0^{--} Charmonium-like State

    Full text link
    We study the possible charmonium-like states with JPC=0−−,0−+J^{PC}=0^{--}, 0^{-+} using the tetraquark interpolating currents with the QCD sum rules approach. The extracted masses are around 4.5 GeV for the 0−−0^{--} charmonium-like states and 4.6 GeV for the 0−+0^{-+} charmonium-like states while their bottomonium-like analogues lie around 10.6 GeV. We also discuss the possible decay, production and the experiment search of the 0−−0^{--} charmonium-like state.Comment: 12 pages, 10 figures, 3 table

    Possible JPC=0+−J^{PC} = 0^{+-} Exotic State

    Full text link
    We study the possible exotic states with JPC=0+−J^{PC} = 0^{+-} using the tetraquark interpolating currents with the QCD sum rule approach. The extracted masses are around 4.85 GeV for the charmonium-like states and 11.25 GeV for the bottomomium-like states. There is no working region for the light tetraquark currents, which implies the light 0+−0^{+-} state may not exist below 2 GeV.Comment: 13 pages, 11 figures, 2 table

    Assessing Percolation Threshold Based on High-Order Non-Backtracking Matrices

    Full text link
    Percolation threshold of a network is the critical value such that when nodes or edges are randomly selected with probability below the value, the network is fragmented but when the probability is above the value, a giant component connecting large portion of the network would emerge. Assessing the percolation threshold of networks has wide applications in network reliability, information spread, epidemic control, etc. The theoretical approach so far to assess the percolation threshold is mainly based on spectral radius of adjacency matrix or non-backtracking matrix, which is limited to dense graphs or locally treelike graphs, and is less effective for sparse networks with non-negligible amount of triangles and loops. In this paper, we study high-order non-backtracking matrices and their application to assessing percolation threshold. We first define high-order non-backtracking matrices and study the properties of their spectral radii. Then we focus on 2nd-order non-backtracking matrix and demonstrate analytically that the reciprocal of its spectral radius gives a tighter lower bound than those of adjacency and standard non-backtracking matrices. We further build a smaller size matrix with the same largest eigenvalue as the 2nd-order non-backtracking matrix to improve computation efficiency. Finally, we use both synthetic networks and 42 real networks to illustrate that the use of 2nd-order non-backtracking matrix does give better lower bound for assessing percolation threshold than adjacency and standard non-backtracking matrices.Comment: to appear in proceedings of the 26th International World Wide Web Conference(WWW2017

    A Numerical Analysis to the {Ï€\pi} and {K} Coupled--Channel Scalar Form-factor

    Get PDF
    A numerical analysis to the scalar form-factor in the ππ\pi\pi and KK coupled--channel system is made by solving the coupled-channel dispersive integral equations, using the iteration method. The solutions are found not unique. Physical application to the ππ\pi\pi central production in the pp→ppππpp\to pp\pi\pi process is discussed based upon the numerical solutions we found.Comment: 8 pages, Latex, 3 figures. Minor changes and one reference adde
    • …
    corecore