4 research outputs found

    Reg-2, a downstream signaling protein in the ciliary neurotrophic factor survival pathway, alleviates experimental autoimmune encephalomyelitis

    Get PDF
    Ciliary neurotrophic factor (CNTF), originally described as a neurocytokine that could support the survival of neurons, has been recently found to alleviate demyelination, prevent axon loss, and improve functional recovery in a rat model of acute experimental autoimmune encephalomyelitis (EAE). However, poor penetration into the brain parenchyma and unfavorable side effects limit the utility of CNTF. Here, we evaluated the therapeutic potential of a protein downstream of CNTF, regeneration gene protein 2 (Reg-2). Using multiple morphological, molecular biology, and electrophysiological methods to assess neuroinflammation, axonal loss, demyelination, and functional impairment, we observed that Reg-2 and CNTF exert similar effects in the acute phase of EAE. Both treatments attenuated axonal loss and demyelination, improved neuronal survival, and produced functional improvement. With a smaller molecular weight and improved penetration into the brain parenchyma, Reg-2 may be a useful substitute for CNTF therapy in EAE and multiple sclerosis

    The trait anger affects conflict inhibition: a Go/Nogo ERP study

    Get PDF
    To explore the time course of inhibitory control in high trait anger individuals, we recorded and analyzed ERP data relevant to visual Go/Nogo task in high and low trait anger participants. Compared with low trait anger participants, high trait anger participants revealed faster RTs in the Go/Nogo task. The nogo effect of N2 related to conflict monitoring was similar between two groups. While the P3go was larger in high than low trait anger groups, the P3nogo did not differ between two groups. This induced the smaller nogo effect of P3 in high than that in low trait anger group, which is closely related to the actual inhibition of the motor system. These data suggest the reduced later stage of inhibitory processes in high trait anger individuals, implicating the dysfunction of inhibitory control

    Promotion of Bamboo mosaic virus accumulation in Nicotiana benthamiana by 5’→3’ exonuclease NbXRN4

    Get PDF
    Bamboo mosaic virus (BaMV) has a 6.4-kb (+) sense RNA genome with a 5’ cap and a 3’ poly(A) tail. ORF1 of this potexvirus encodes a 155-kDa replication protein responsible for the viral RNA replication/transcription and 5’ cap formation. To learn more about the replication complex of BaMV, a protein preparation enriched in the 155-kDa replication protein was obtained from Nicotiana benthamiana by a protocol involving agroinfiltration and immunoprecipitation. Subsequent analysis by SDS-PAGE and mass spectrometry identified a handful of host proteins that may participate in the viral replication. Among them, the cytoplasmic exoribonuclease NbXRN4 particularly caught our attention. NbXRN4 has been shown to have an antiviral activity against Tomato bushy stunt virus and Tomato mosaic virus. In Arabidopsis, the enzyme could reduce RNAi- and miRNA-mediated RNA decay. This study found that downregulation of NbXRN4 greatly decreased BaMV accumulation, while overexpression of NbXRN4 resulted in an opposite effect. Mutations at the catalytically essential residues abolished the function of NbXRN4 in the increase of BaMV accumulation. Nonetheless, NbXRN4 was still able to promote BaMV accumulation in the presence of the RNA silencing suppressor P19. In summary, the replication efficiency of BaMV may be improved by the exoribonuclease activity of NbXRN4
    corecore