5,081 research outputs found

    Inflationary NonGaussianity from Thermal Fluctuations

    Full text link
    We calculate the contribution of the fluctuations with the thermal origin to the inflationary nonGaussianity. We find that even a small component of radiation can lead to a large nonGaussianity. We show that this thermal nonGaussianity always has positive fNLf_{\rm NL}. We illustrate our result in the chain inflation model and the very weakly dissipative warm inflation model. We show that fNL∼O(1)f_{NL}\sim {\cal O}(1) is general in such models. If we allow modified equation of state, or some decoupling effects, the large thermal nonGaussianity of order fNL>5f_{\rm NL}>5 or even fNL∼100f_{\rm NL}\sim 100 can be produced. We also show that the power spectrum of chain inflation should have a thermal origin. In the Appendix A, we made a clarification on the different conventions used in the literature related to the calculation of fNLf_{\rm NL}.Comment: 20 pages, 1 figure. v2, v3: references and acknowledgments update

    Generalized Space-time Noncommutative Inflation

    Full text link
    We study the noncommutative inflation with a time-dependent noncommutativity between space and time. From the numerical analysis of power law inflation, there are clues that the CMB spectrum indicates a nonconstant noncommutative inflation. Then we extend our treatment to the inflation models with more general noncommutativity and find that the scalar perturbation power spectrum depends sensitively on the time varying of the spacetime noncommutativity. This stringy effect may be probed in the future cosmological observations.Comment: 15 pages, 2 figure

    RIS-Assisted Self-Interference Mitigation for In-Band Full-Duplex Transceivers

    Full text link
    The wireless in-band full-duplex (IBFD) technology can in theory double the system capacity over the conventional frequency division duplex (FDD) or time-division duplex (TDD) alternatives. But the strong self-interference of the IBFD can cause excessive quantization noise in the analog-to-digital converters (ADC), which represents the hurdle for its real implementation. In this paper, we consider employing a reconfigurable intelligent surface (RIS) for IBFD communications. While the BS transmits and receives the signals to and from the users simultaneously on the same frequency band, it can adjust the reflection coefficients of the RIS to configure the wireless channel so that the self-interference of the BS is sufficiently mitigated in the propagation domain. Taking the impact of the quantization noise into account, we propose to jointly design the downlink (DL) precoding matrix and the RIS coefficients to maximize the sum of uplink (UL) and DL rates. The effectiveness of the proposed RIS-assisted in-band full-duplex (RAIBFD) system is verified by simulation studies, even taking into considerations that the phases of the RIS have only finite resolution.Comment: 11 page
    • …
    corecore