3 research outputs found
AI is a viable alternative to high throughput screening: a 318-target study
: High throughput screening (HTS) is routinely used to identify bioactive small molecules. This requires physical compounds, which limits coverage of accessible chemical space. Computational approaches combined with vast on-demand chemical libraries can access far greater chemical space, provided that the predictive accuracy is sufficient to identify useful molecules. Through the largest and most diverse virtual HTS campaign reported to date, comprising 318 individual projects, we demonstrate that our AtomNet® convolutional neural network successfully finds novel hits across every major therapeutic area and protein class. We address historical limitations of computational screening by demonstrating success for target proteins without known binders, high-quality X-ray crystal structures, or manual cherry-picking of compounds. We show that the molecules selected by the AtomNet® model are novel drug-like scaffolds rather than minor modifications to known bioactive compounds. Our empirical results suggest that computational methods can substantially replace HTS as the first step of small-molecule drug discovery
A State-of-Art on the Development of Nafion-Based Membrane for Performance Improvement in Direct Methanol Fuel Cells
Nafion, a perfluorosulfonic acid proton exchange membrane (PEM), has been widely used in direct methanol fuel cells (DMFCs) to serve as a proton carrier, methanol barrier, and separator for the anode and cathode. A significant drawback of Nafion in DMFC applications is the high anode-to-cathode methanol fuel permeability that results in over 40% fuel waste. Therefore, the development of a new membrane with lower permeability while retaining the high proton conductivity and other inherent properties of Nafion is greatly desired. In light of these considerations, this paper discusses the research findings on developing Nafion-based membranes for DMFC. Several aspects of the DMFC membrane are also presented, including functional requirements, transport mechanisms, and preparation strategies. More importantly, the effect of the various modification approaches on the performance of the Nafion membrane is highlighted. These include the incorporation of inorganic fillers, carbon nanomaterials, ionic liquids, polymers, or other techniques. The feasibility of these membranes for DMFC applications is discussed critically in terms of transport phenomena-related characteristics such as proton conductivity and methanol permeability. Moreover, the current challenges and future prospects of Nafion-based membranes for DMFC are presented. This paper will serve as a resource for the DMFC research community, with the goal of improving the cost-effectiveness and performance of DMFC membranes