32,367 research outputs found

    Tunable one-dimensional microwave emissions from cyclic-transition three-level atoms

    Get PDF
    By strongly driving a cyclic-transition three-level artificial atom, demonstrated by such as a flux-based superconducting circuit, we show that coherent microwave signals can be excited along a coupled one-dimensional transmission line. Typically, the intensity of the generated microwave is tunable via properly adjusting the Rabi frequencies of the applied strong-driving fields or introducing a probe field with the same frequency. In practice, the system proposed here could work as an on-chip quantum device with controllable atom-photon interaction to implement a total-reflecting mirror or switch for the propagating probe field.Comment: 4 pages, 5 figure

    Gain without inversion in quantum systems with broken parities

    Full text link
    For a quantum system with broken parity symmetry, selection rules can not hold and cyclic transition structures are generated. With these loop-transitions we discuss how to achieve inversionless gain of the probe field by properly setting the control and auxiliary fields. Possible implementations of our generic proposal with specific physical objects with broken parities, e.g., superconducting circuits and chiral molecules, are also discussed.Comment: 12 pages, 4 figure

    A survey on gain-scheduled control and filtering for parameter-varying systems

    Get PDF
    Copyright © 2014 Guoliang Wei et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.This paper presents an overview of the recent developments in the gain-scheduled control and filtering problems for the parameter-varying systems. First of all, we recall several important algorithms suitable for gain-scheduling method including gain-scheduled proportional-integral derivative (PID) control, H 2, H ∞ and mixed H 2 / H ∞ gain-scheduling methods as well as fuzzy gain-scheduling techniques. Secondly, various important parameter-varying system models are reviewed, for which gain-scheduled control and filtering issues are usually dealt with. In particular, in view of the randomly occurring phenomena with time-varying probability distributions, some results of our recent work based on the probability-dependent gain-scheduling methods are reviewed. Furthermore, some latest progress in this area is discussed. Finally, conclusions are drawn and several potential future research directions are outlined.The National Natural Science Foundation of China under Grants 61074016, 61374039, 61304010, and 61329301; the Natural Science Foundation of Jiangsu Province of China under Grant BK20130766; the Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning; the Program for New Century Excellent Talents in University under Grant NCET-11-1051, the Leverhulme Trust of the U.K., the Alexander von Humboldt Foundation of Germany

    Can the Bump be Observed in the Early Afterglow of GRBS with X-Ray Line Emission Features?

    Full text link
    Extremely powerful emission lines are observed in the X-ray afterglow of several GRBs. The energy contained in the illuminating continuum which is responsible for the line production exceeds 1051^{51} erg, much higher than that of the collimated GRBs. It constrains the models which explain the production of X-ray emission lines. In this paper, We argue that this energy can come from a continuous postburst outflow. Focusing on a central engine of highly magnetized millisecond pulsar or magnetar we find that afterglow can be affected by the illuminating continuum, and therefore a distinct achromatic bump may be observed in the early afterglow lightcurves. With the luminosity of the continuous outflow which produces the line emission, we define the upper limit of the time when the bump feature appears. We argue that the reason why the achromatic bumps have not been detected so far is that the bumps should appear at the time too early to be observed.Comment: 13 pags, 2 tables, appear in v603 n1 pt1 ApJ March 1, 2004 issu

    Vacuum induced Berry phases in single-mode Jaynes-Cummings models

    Full text link
    Motivated by the work [Phys. Rev. Lett. 89, 220404 (2002)] for detecting the vacuum-induced Berry phases with two-mode Jaynes-Cummings models (JCMs), we show here that, for a parameter-dependent single-mode JCM, certain atom-field states also acquire the photon-number-dependent Berry phases after the parameter slowly changed and eventually returned to its initial value. This geometric effect related to the field quantization still exists, even the filed is kept in its vacuum state. Specifically, a feasible Ramsey interference experiment with cavity quantum electrodynamics (QED) system is designed to detect the vacuum-induced Berry phase.Comment: 10 pages, 4 figures
    • …
    corecore