48,011 research outputs found

    Sub-Optimal Allocation of Time in Sequential Movements

    Get PDF
    The allocation of limited resources such as time or energy is a core problem that organisms face when planning complex actions. Most previous research concerning planning of movement has focused on the planning of single, isolated movements. Here we investigated the allocation of time in a pointing task where human subjects attempted to touch two targets in a specified order to earn monetary rewards. Subjects were required to complete both movements within a limited time but could freely allocate the available time between the movements. The time constraint presents an allocation problem to the subjects: the more time spent on one movement, the less time is available for the other. In different conditions we assigned different rewards to the two tokens. How the subject allocated time between movements affected their expected gain on each trial. We also varied the angle between the first and second movements and the length of the second movement. Based on our results, we developed and tested a model of speed-accuracy tradeoff for sequential movements. Using this model we could predict the time allocation that would maximize the expected gain of each subject in each experimental condition. We compared human performance with predicted optimal performance. We found that all subjects allocated time sub-optimally, spending more time than they should on the first movement even when the reward of the second target was five times larger than the first. We conclude that the movement planning system fails to maximize expected reward in planning sequences of as few as two movements and discuss possible interpretations drawn from economic theory

    Realizing quantum controlled phase-flip gate through quantum dot in silicon slow-light photonic crystal waveguide

    Full text link
    We propose a scheme to realize controlled phase gate between two single photons through a single quantum dot in slow-light silicon photonic crystal waveguide. Enhanced Purcell factor and beta factor lead to high gate fidelity over broadband frequencies compared to cavity-assisted system. The excellent physical integration of this silicon photonic crystal waveguide system provides tremendous potential for large-scale quantum information processing.Comment: 9 pages, 3 figure

    Gamma-ray bursts: postburst evolution of fireballs

    Get PDF
    The postburst evolution of fireballs that produce γ\gamma-ray bursts is studied, assuming the expansion of fireballs to be adiabatic and relativistic. Numerical results as well as an approximate analytic solution for the evolution are presented. Due to adoption of a new relation among tt, RR and γ\gamma (see the text), our results differ markedly from the previous studies. Synchrotron radiation from the shocked interstellar medium is attentively calculated, using a convenient set of equations. The observed X-ray flux of GRB afterglows can be reproduced easily. Although the optical afterglows seem much more complicated, our results can still present a rather satisfactory approach to observations. It is also found that the expansion will no longer be highly relativistic about 4 days after the main GRB. We thus suggest that the marginally relativistic phase of the expansion should be investigated so as to check the afterglows observed a week or more later.Comment: 17 pages, 4 figures, MNRAS in pres

    Quantum Oscillations in Magnetic Field Induced Antiferromagnetic Phase of Underdoped Cuprates : Application to Ortho-II YBa2Cu3O6.5

    Get PDF
    Magnetic field induced antiferromagnetic phase of the underdoped cuprates is studied within the t-t'-J model. A magnetic field suppresses the pairing amplitude, which in turn may induce antiferromagnetism. We apply our theory to interpret the recently reported quantum oscillations in high magnetic field in ortho-II YBa2Cu3O6.5 and propose that the total hole density abstracted from the oscillation period is reduced by 50% due to the antiferromagnetism.Comment: 5 pages, 3 figure

    Data Management Systems (DMS): Complex data types study. Volume 1: Appendices A-B. Volume 2: Appendices C1-C5. Volume 3: Appendices D1-D3 and E

    Get PDF
    Two categories were chosen for study: the issue of using a preprocessor on Ada code of Application Programs which would interface with the Run-Time Object Data Base Standard Services (RODB STSV), the intent was to catch and correct any mis-registration errors of the program coder between the user declared Objects, their types, their addresses, and the corresponding RODB definitions; and RODB STSV Performance Issues and Identification of Problems with the planned methods for accessing Primitive Object Attributes, this included the study of an alternate storage scheme to the 'store objects by attribute' scheme in the current design of the RODB. The study resulted in essentially three separate documents, an interpretation of the system requirements, an assessment of the preliminary design, and a detailing of the components of a detailed design

    Interlayer couplings and the coexistence of antiferromagnetic and d-wave pairing order in multilayer cuprates

    Full text link
    A more extended low density region of coexisting uniform antiferromagnetism and d-wave superconductivity has been reported in multilayer cuprates, when compared to single or bilayer cuprates. This coexistence could be due to the enhanced screening of random potential modulations in inner layers or to the interlayer Heisenberg and Josephson couplings. A theoretical analysis using a renormalized mean field theory, favors the former explanation. The potential for an improved determination of the antiferromagnetic and superconducting order parameters in an ideal single layer from zero field NMR and infrared Josephson plasma resonances in multilayer cuprates is discussed.Comment: 6 pages, 2 figure

    Modeling the Optical Afterglow of GRB 030329

    Full text link
    The best-sampled afterglow light curves are available for GRB 030329. A distinguishing feature of this event is the obvious rebrightening at around 1.6 days after the burst. Proposed explanations for the rebrightening mainly include the two-component jet model and the refreshed shock model, although a sudden density-jump in the circumburst environment is also a potential choice. Here we re-examine the optical afterglow of GRB 030329 numerically in light of the three models. In the density-jump model, no obvious rebrightening can be produced at the jump moment. Additionally, after the density jump, the predicted flux density decreases rapidly to a level that is significantly below observations. A simple density-jump model thus can be excluded. In the two-component jet model, although the observed late afterglow (after 1.6 days) can potentially be explained as emission from the wide-component, the emergence of this emission actually is too slow and it does not manifest as a rebrightening as previously expected. The energy-injection model seems to be the most preferred choice. By engaging a sequence of energy-injection events, it provides an acceptable fit to the rebrightening at ∼1.6\sim 1.6 d, as well as the whole observed light curve that extends to ∼80\sim 80 d. Further studies on these multiple energy-injection processes may provide a valuable insight into the nature of the central engines of gamma-ray bursts.Comment: 18 pages, 3 figures; a few references added and minor word changes; now accepted for publication in Ap

    Estimating entanglement measures in experiments

    Full text link
    We present a method to estimate entanglement measures in experiments. We show how a lower bound on a generic entanglement measure can be derived from the measured expectation values of any finite collection of entanglement witnesses. Hence witness measurements are given a quantitative meaning without the need of further experimental data. We apply our results to a recent multi-photon experiment [M. Bourennane et al., Phys. Rev. Lett. 92, 087902 (2004)], giving bounds on the entanglement of formation and the geometric measure of entanglement in this experiment.Comment: 4 pages, 1 figure, v2: final versio

    Search for doubly charged Higgs bosons using the same-sign diboson mode at the LHC

    Full text link
    Doubly charged Higgs bosons are predicted in many new physics models with an extended Higgs sector that contains a Higgs triplet field. Current experimental searches have been focusing mainly on the scenario in which the same-sign dilepton decay modes are the dominant ones. We study the scenario where the vacuum expectation value of the triplet field is sufficiently large so that the associated charged Higgs bosons decay dominantly to a pair of weak gauge bosons instead. A detailed simulation of the signal and the backgrounds is performed for the CERN Large Hadron Collider at the collision energy of 8 TeV and 14 TeV. We find that different cuts should be imposed for the events, depending on whether the doubly charged Higgs boson mass is greater than about 200 GeV. In the higher mass region, the forward jet tagging proves to be useful in enhancing the signal significance. We show the discovery reach of the LHC running at 8 and 14 TeV, with two benchmark triplet vacuum expectation values. With an integrated luminosity of 10 fb−1{}^{-1} at 8 TeV, the doubly charged Higgs boson with a mass of ∼180\sim 180 GeV can be tested at 5σ5\sigma level in such a scenario.Comment: 18 pages, 10 figures; published in Physical Review
    • …
    corecore