6 research outputs found

    A New Guide Lifter for the Transceiver of USBL

    Get PDF
    A new guide lifter has been put forward for the transceiver of Ultra Short Base Line (USBL) with a worm gear reducer applied as self-locking of the lifter and a chain structure applied to drive the sliding shaft moving up and down. The new device is 7500 mm long and connected to the end of the transceiver. Linear motion products are introduced to ensure the shaft unable to rotate and the position measurements are provided by position sensors. A heavy self-sealing sliding bearing, which is 800 mm in length, keeps the shaft running reliably. Then the three-dimensional model is built and the structure parameters of the lifter are calculated. Later, the working process of the lifter is simulated to guarantee the movement parameters meet the request of USBL. Finally, the experiment on the intensity and stiffness of the lifter is carried out via the finite element model of the lifter built in ANSYS with the maximum load conditions and the result has been experimentally verified. This device provides a reliable approach of operating USBL which plays a vitally important role in ocean exploration and the research results are successfully applied to the scientific research vessels of Dayang No. 1 as well as Xiangyanghong No. 9

    Physical Modeling for Large-Scale Landslide with Chair-Shaped Bedrock Surfaces under Precipitation and Reservoir Water Fluctuation Conditions

    No full text
    The deformation and failure mechanisms of historical landslides, characterized with different types of bedrock surface shapes which are known to have been induced by rainfall and reservoir water fluctuations, is an important issue currently being addressed by many researchers. The Zhaoshuling Landslide of the Three Gorges Reservoir Region, which was characterized with a chair-shaped bedrock surface under rainfall and reservoir water fluctuation conditions, was selected as an example in this study’s physical modeling process. The results of different parameters, including the displacements, pore water pressure, and total soil pressure during the landslide event, revealed that the Zhaoshuling Landslide with a chair-shaped bedrock surface had been extremely sensitive to heavy rainfall coupled with the rapid lowering of the water levels. Then, based on the data analysis results of the monitoring of the rainfall and groundwater levels, as well as the reservoir water levels, a conceptual model was put forward to explain the failure mechanisms. It was believed that the chair-shaped bedrock at the toe of the slope had been subjected to a localized zone of high transient pore water pressure, which had significantly adverse effects on the mechanisms of the slope stability

    Physical Modeling for Large-Scale Landslide with Chair-Shaped Bedrock Surfaces under Precipitation and Reservoir Water Fluctuation Conditions

    No full text
    The deformation and failure mechanisms of historical landslides, characterized with different types of bedrock surface shapes which are known to have been induced by rainfall and reservoir water fluctuations, is an important issue currently being addressed by many researchers. The Zhaoshuling Landslide of the Three Gorges Reservoir Region, which was characterized with a chair-shaped bedrock surface under rainfall and reservoir water fluctuation conditions, was selected as an example in this study’s physical modeling process. The results of different parameters, including the displacements, pore water pressure, and total soil pressure during the landslide event, revealed that the Zhaoshuling Landslide with a chair-shaped bedrock surface had been extremely sensitive to heavy rainfall coupled with the rapid lowering of the water levels. Then, based on the data analysis results of the monitoring of the rainfall and groundwater levels, as well as the reservoir water levels, a conceptual model was put forward to explain the failure mechanisms. It was believed that the chair-shaped bedrock at the toe of the slope had been subjected to a localized zone of high transient pore water pressure, which had significantly adverse effects on the mechanisms of the slope stability

    Evolution of genes and genomes on the Drosophila phylogeny

    Get PDF
    Affiliations des auteurs : cf page 216 de l'articleInternational audienceComparative analysis of multiple genomes in a phylogenetic framework dramatically improves the precision and sensitivity of evolutionary inference, producing more robust results than single-genome analyses can provide. The genomes of 12 Drosophila species, ten of which are presented here for the first time (sechellia, simulans, yakuba, erecta, ananassae, persimilis, willistoni, mojavensis, virilis and grimshawi), illustrate how rates and patterns of sequence divergence across taxa can illuminate evolutionary processes on a genomic scale. These genome sequences augment the formidable genetic tools that have made Drosophila melanogaster a pre-eminent model for animal genetics, and will further catalyse fundamental research on mechanisms of development, cell biology, genetics, disease, neurobiology, behaviour, physiology and evolution. Despite remarkable similarities among these Drosophila species, we identified many putatively non-neutral changes in protein-coding genes, non-coding RNA genes, and cis-regulatory regions. These may prove to underlie differences in the ecology and behaviour of these diverse species

    Evolution of genes and genomes on the Drosophila phylogeny

    No full text
    Comparative analysis of multiple genomes in a phylogenetic framework dramatically improves the precision and sensitivity of evolutionary inference, producing more robust results than single-genome analyses can provide. The genomes of 12 Drosophila species, ten of which are presented here for the first time (sechellia, simulans, yakuba, erecta, ananassae, persimilis, willistoni, mojavensis, virilis and grimshawi), illustrate how rates and patterns of sequence divergence across taxa can illuminate evolutionary processes on a genomic scale. These genome sequences augment the formidable genetic tools that have made Drosophila melanogaster a pre-eminent model for animal genetics, and will further catalyse fundamental research on mechanisms of development, cell biology, genetics, disease, neurobiology, behaviour, physiology and evolution. Despite remarkable similarities among these Drosophila species, we identified many putatively non-neutral changes in protein-coding genes, non-coding RNA genes, and cis-regulatory regions. These may prove to underlie differences in the ecology and behaviour of these diverse species
    corecore