705 research outputs found
Phase transition in Schwarzschild-de Sitter spacetime
Using a static massive spherically symmetric scalar field coupled to gravity
in the Schwarzschild-de Sitter (SdS) background, first we consider some
asymptotic solutions near horizon and their local equations of state(E.O.S) on
them. We show that near cosmological and event horizons our scalar field
behaves as a dust. At the next step near two pure de-Sitter or Schwarzschild
horizons we obtain a coupling dependent pressure to energy density ratio. In
the case of a minimally couplling this ratio is -1 which springs to the mind
thermodynamical behavior of dark energy. If having a negative pressure behavior
near these horizons we concluded that the coupling constant must be
>. Therefore we derive a new constraint on the value of our coupling .
These two different behaviors of unique matter in the distinct regions of
spacetime at present era can be interpreted as a phase transition from dark
matter to dark energy in the cosmic scales and construct a unified scenario.Comment: 7 pages,no figures,RevTex, Typos corrected and references adde
Interacting Agegraphic Dark Energy
A new dark energy model, named "agegraphic dark energy", has been proposed
recently, based on the so-called K\'{a}rolyh\'{a}zy uncertainty relation, which
arises from quantum mechanics together with general relativity. In this note,
we extend the original agegraphic dark energy model by including the
interaction between agegraphic dark energy and pressureless (dark) matter. In
the interacting agegraphic dark energy model, there are many interesting
features different from the original agegraphic dark energy model and
holographic dark energy model. The similarity and difference between agegraphic
dark energy and holographic dark energy are also discussed.Comment: 10 pages, 5 figures, revtex4; v2: references added; v3: accepted by
Eur. Phys. J. C; v4: published versio
in interacting quintessence model
A model consisting of quintessence scalar field interacting with cold dark
matter is considered. Conditions required to reach are discussed. It
is shown that depending on the potential considered for the quintessence,
reaching the phantom divide line puts some constraints on the interaction
between dark energy and dark matter. This also may determine the ratio of dark
matter to dark energy density at .Comment: 10 pages, references updated, some notes added, minor changes
applied, accepted for publication in Eur. Phys. J.
Scalar field exact solutions for non-flat FLRW cosmology: A technique from non-linear Schr\"odinger-type formulation
We report a method of solving for canonical scalar field exact solution in a
non-flat FLRW universe with barotropic fluid using non-linear Schr\"{o}dinger
(NLS)-type formulation in comparison to the method in the standard Friedmann
framework. We consider phantom and non-phantom scalar field cases with
exponential and power-law accelerating expansion. Analysis on effective
equation of state to both cases of expansion is also performed. We speculate
and comment on some advantage and disadvantage of using the NLS formulation in
solving for the exact solution.Comment: 12 pages, GERG format, Reference added. accepted by Gen. Relativ. and
Gra
Parameterization and Reconstruction of Quasi Static Universe
We study a possibility of the fate of universe, in which there is neither the
rip singularity, which results in the disintegration of bound systems, nor the
endless expansion, instead the universe will be quasi static. We discuss the
parameterization of the corresponding evolution and the reconstruction of the
scalar field model. We find, with the parameterization consistent with the
current observation, that the current universe might arrive at a quasi static
phase after less than 20Gyr.Comment: minor changes and Refs. added, publish in EPJ
Attractor Solutions in f(T) Cosmology
In this paper, we explore the cosmological implications of interacting dark
energy model in a torsion based gravity namely . Assuming dark energy
interacts with dark matter and radiation components, we examine the stability
of this model by choosing different forms of interaction terms. We consider
three different forms of dark energy: cosmological constant, quintessence and
phantom energy. We then obtain several attractor solutions for each dark energy
model interacting with other components. This model successfully explains the
coincidence problem via the interacting dark energy scenario.Comment: 10 pages, 23 figures, version accepted for publication in European
Physical Journal C (2012
Interaction between Tachyon and Hessence (or Hantom) dark energies
In this paper, we have considered that the universe is filled with tachyon,
hessence (or hantom) dark energies. Subsequently we have investigated the
interactions between tachyon and hessence (hantom) dark energies and calculated
the potentials considering the power law form of the scale factor. It has been
revealed that the tachyonic potential always decreases and hessence (or hantom)
potential increases with corresponding fields. Furthermore, we have considered
a correspondence between the hessence (or hantom) dark energy density and new
variable modified Chaplygin gas energy density. From this, we have found the
expressions of the arbitrary positive constants B0 and C of new variable
modified Chaplygin gas
Power-law entropy-corrected HDE and NADE in Brans-Dicke cosmology
Considering the power-law corrections to the black hole entropy, which appear
in dealing with the entanglement of quantum fields inside and outside the
horizon, the holographic energy density is modified accordingly. In this paper
we study the power-law entropy-corrected holographic dark energy in the
framework of Brans-Dicke theory. We investigate the cosmological implications
of this model in detail. We also perform the study for the new agegraphic dark
energy model and calculate some relevant cosmological parameters and their
evolution. {As a result we find that this model can provide the present cosmic
acceleration and even the equation of state parameter of this model can cross
the phantom line provided the model parameters are chosen suitably}.Comment: 14 pages, 2 figure, accepted by IJT
Statefinder diagnostic and stability of modified gravity consistent with holographic and new agegraphic dark energy
Recently one of us derived the action of modified gravity consistent with the
holographic and new-agegraphic dark energy. In this paper, we investigate the
stability of the Lagrangians of the modified gravity as discussed in [M. R.
Setare, Int. J. Mod. Phys. D 17 (2008) 2219; M. R. Setare, Astrophys. Space
Sci. 326 (2010) 27]. We also calculate the statefinder parameters which
classify our dark energy model.Comment: 12 pages, 2 figures, accepted by Gen. Relativ. Gravi
Weak Localization and Integer Quantum Hall Effect in a Periodic Potential
We consider magnetotransport in a disordered two-dimensional electron gas in
the presence of a periodic modulation in one direction. Existing quasiclassical
and quantum approaches to this problem account for Weiss oscillations in the
resistivity tensor at moderate magnetic fields, as well as a strong
modulation-induced modification of the Shubnikov-de Haas oscillations at higher
magnetic fields. They do not account, however, for the operation at even higher
magnetic fields of the integer quantum Hall effect, for which quantum
interference processes are responsible. We then introduce a field-theory
approach, based on a nonlinear sigma model, which encompasses naturally both
the quasiclassical and quantum-mechanical approaches, as well as providing a
consistent means of extending them to include quantum interference corrections.
A perturbative renormalization-group analysis of the field theory shows how
weak localization corrections to the conductivity tensor may be described by a
modification of the usual one-parameter scaling, such as to accommodate the
anisotropy of the bare conductivity tensor. We also show how the two-parameter
scaling, conjectured as a model for the quantum Hall effect in unmodulated
systems, may be generalized similarly for the modulated system. Within this
model we illustrate the operation of the quantum Hall effect in modulated
systems for parameters that are realistic for current experiments.Comment: 15 pages, 4 figures, ReVTeX; revised version with condensed
introduction; two figures taken out; reference adde
- …
