28,787 research outputs found
Geometric entanglement from matrix product state representations
An efficient scheme to compute the geometric entanglement per lattice site
for quantum many-body systems on a periodic finite-size chain is proposed in
the context of a tensor network algorithm based on the matrix product state
representations. It is systematically tested for three prototypical critical
quantum spin chains, which belong to the same Ising universality class. The
simulation results lend strong support to the previous claim [Q.-Q. Shi, R.
Or\'{u}s, J. O. Fj{\ae}restad, and H.-Q. Zhou, New J. Phys \textbf{12}, 025008
(2010); J.-M. St\'{e}phan, G. Misguich, and F. Alet, Phys. Rev. B \textbf{82},
180406R (2010)] that the leading finite-size correction to the geometric
entanglement per lattice site is universal, with its remarkable connection to
the celebrated Affleck-Ludwig boundary entropy corresponding to a conformally
invariant boundary condition.Comment: 4+ pages, 3 figure
A qubit strongly-coupled to a resonant cavity: asymmetry of the spontaneous emission spectrum beyond the rotating wave approximation
We investigate the spontaneous emission spectrum of a qubit in a lossy
resonant cavity. We use neither the rotating-wave approximation nor the Markov
approximation. The qubit-cavity coupling strength is varied from weak, to
strong, even to lower bound of the ultra-strong. For the weak-coupling case,
the spontaneous emission spectrum of the qubit is a single peak, with its
location depending on the spectral density of the qubit environment. Increasing
the qubit-cavity coupling increases the asymmetry (the positions about the
qubit energy spacing and heights of the two peaks) of the two spontaneous
emission peaks (which are related to the vacuum Rabi splitting) more.
Explicitly, for a qubit in a low-frequency intrinsic bath, the height asymmetry
of the splitting peaks becomes larger, when the qubit-cavity coupling strength
is increased. However, for a qubit in an Ohmic bath, the height asymmetry of
the spectral peaks is inverted from the same case of the low-frequency bath,
when the qubit is strongly coupled to the cavity. Increasing the qubit-cavity
coupling to the lower bound of the ultra-strong regime, the height asymmetry of
the left and right peak heights are inverted, which is consistent with the same
case of low-frequency bath, only relatively weak. Therefore, our results
explicitly show how the height asymmetry in the spontaneous emission spectrum
peaks depends not only on the qubit-cavity coupling, but also on the type of
intrinsic noise experienced by the qubit.Comment: 10pages, 5 figure
Plaquette order and deconfined quantum critical point in the spin-1 bilinear-biquadratic Heisenberg model on the honeycomb lattice
We have precisely determined the ground state phase diagram of the quantum
spin-1 bilinear-biquadratic Heisenberg model on the honeycomb lattice using the
tensor renormalization group method. We find that the ferromagnetic,
ferroquadrupolar, and a large part of the antiferromagnetic phases are stable
against quantum fluctuations. However, around the phase where the ground state
is antiferroquadrupolar ordered in the classical limit, quantum fluctuations
suppress completely all magnetic orders, leading to a plaquette order phase
which breaks the lattice symmetry but preserves the spin SU(2) symmetry. On the
evidence of our numerical results, the quantum phase transition between the
antiferromagnetic phase and the plaquette phase is found to be either a direct
second order or a very weak first order transition.Comment: 6 pages, 9 figures, published versio
Anisotropic superconducting properties of aligned SmLaFeAsOF microcrystalline powder
The SmLaFeAsOF compound is a quasi-2D
layered superconductor with a superconducting transition temperature T = 52
K. Due to the Fe spin-orbital related anisotropic exchange coupling
(antiferromagnetic or ferromagnetic fluctuation), the tetragonal
microcrystalline powder can be aligned at room temperature using the
field-rotation method where the tetragonal -plane is parallel to the
aligned magnetic field B and -axis along the rotation axis.
Anisotropic superconducting properties with anisotropic diamagnetic ratio
2.4 + 0.6 was observed from low field susceptibility
(T) and magnetization M(B). The anisotropic low-field phase diagram
with the variation of lower critical field gives a zero-temperature penetration
depth (0) = 280 nm and (0) = 120 nm. The magnetic
fluctuation used for powder alignment at 300 K may be related with the pairing
mechanism of superconductivity at lower temperature.Comment: 4 pages, 6 figure
Maximum Path Information and Fokker-Planck Equation
We present in this paper a rigorous method to derive the nonlinear
Fokker-Planck (FP) equation of anomalous diffusion directly from a
generalization of the principle of least action of Maupertuis proposed by Wang
for smooth or quasi-smooth irregular dynamics evolving in Markovian process.
The FP equation obtained may take two different but equivalent forms. It was
also found that the diffusion constant may depend on both q (the index of
Tsallis entropy) and the time t.Comment: 7 page
- …