8,981 research outputs found

    Strong rainbow connection numbers of toroidal meshes

    Full text link
    In 2011, Li et al. \cite{LLL} obtained an upper bound of the strong rainbow connection number of an rr-dimensional undirected toroidal mesh. In this paper, this bound is improved. As a result, we give a negative answer to their problem.Comment: 9 pages, 3 figure

    Steady state current fluctuations and dynamical control in a nonequilibrium single-site Bose-Hubbard system

    Full text link
    We investigate nonequilibrium energy transfer in a single-site Bose-Hubbard model coupled to two thermal baths. By including a quantum kinetic equation combined with full counting statistics, we investigate the steady state energy flux and noise power. The influence of the nonlinear Bose-Hubbard interaction on the transfer behaviors is analyzed, and the nonmonotonic features are clearly exhibited. Particularly, in the strong on-site repulsion limit, the results become identical with the nonequilibrium spin-boson model. We also extend the quantum kinetic equation to study the geometric-phase-induced energy pump. An interesting reversal behavior is unraveled by enhancing the Bose-Hubbard repulsion strength.Comment: 12 pages,6 figure

    Shadows of Kerr-like black holes in a modified gravity theory

    Full text link
    In this paper, the shadows cast by non-rotating and rotating modified gravity black holes are investigated. In addition to the black hole spin parameter aa and the inclination angle θ\theta of observer, another parameter α\alpha measuring the deviation of gravitational constant from the Newton one is also found to affect the shape of the black hole shadow. The result shows that, for fixed values of a/Ma/M and θ\theta, the size and perimeter of the shadows cast by the non-rotating and rotating black holes significantly increase with the parameter α\alpha, while the distortions decrease with α\alpha. Moreover, the energy emission rate of the black hole in high energy case is also investigated, and the result shows that the peak of the emission rate decreases with the parameter α\alpha.Comment: 14 pages, 8 figure

    Negative differential thermal conductance and heat amplification in a nonequilibrium triangle-coupled spin-boson system at strong coupling

    Full text link
    We investigate the nonequilibrium quantum heat transfer in a triangle-coupled spin-boson system within a three-terminal setup. By including the nonequilibrium noninteracting blip approximation approach combined with the full counting statistics, we analytically obtain the steady state populations and heat currents. The negative differential thermal conductance and giant heat amplification factor are clearly observed at strong qubit-bath coupling. %and the heat amplification is dramatically suppressed in the moderate coupling regime. Moreover, the strong interaction between the gating qubit and gating thermal bath is unraveled to be compulsory to exhibit these far-from equilibrium features.Comment: 9 pages, 6 figure

    FaceShapeGene: A Disentangled Shape Representation for Flexible Face Image Editing

    Full text link
    Existing methods for face image manipulation generally focus on editing the expression, changing some predefined attributes, or applying different filters. However, users lack the flexibility of controlling the shapes of different semantic facial parts in the generated face. In this paper, we propose an approach to compute a disentangled shape representation for a face image, namely the FaceShapeGene. The proposed FaceShapeGene encodes the shape information of each semantic facial part separately into a 1D latent vector. On the basis of the FaceShapeGene, a novel part-wise face image editing system is developed, which contains a shape-remix network and a conditional label-to-face transformer. The shape-remix network can freely recombine the part-wise latent vectors from different individuals, producing a remixed face shape in the form of a label map, which contains the facial characteristics of multiple subjects. The conditional label-to-face transformer, which is trained in an unsupervised cyclic manner, performs part-wise face editing while preserving the original identity of the subject. Experimental results on several tasks demonstrate that the proposed FaceShapeGene representation correctly disentangles the shape features of different semantic parts. %In addition, we test our system on several novel part-wise face editing tasks. Comparisons to existing methods demonstrate the superiority of the proposed method on accomplishing novel face editing tasks

    Contagion on complex networks with persuasion

    Full text link
    The threshold model has been widely adopted as a classic model for studying contagion processes on social networks. We consider asymmetric individual interactions in social networks and introduce a persuasion mechanism into the threshold model. Specifically, we study a combination of adoption and persuasion in cascading processes on complex networks. It is found that with the introduction of the persuasion mechanism, the system may become more vulnerable to global cascades, and the effects of persuasion tend to be more significant in heterogeneous networks than those in homogeneous networks: a comparison between heterogeneous and homogeneous networks shows that under weak persuasion, heterogeneous networks tend to be more robust against random shocks than homogeneous networks; whereas under strong persuasion, homogeneous networks are more stable. Finally, we study the effects of adoption and persuasion threshold heterogeneity on systemic stability. Though both heterogeneities give rise to global cascades, the adoption heterogeneity has an overwhelmingly stronger impact than the persuasion heterogeneity when the network connectivity is sufficiently dense.Comment: 12 pages, 7 figure

    Study of Magnetic Hysteresis Effects in a Storage Ring Using Precision Tune Measurement

    Full text link
    With advances in accelerator science and technology in the recent decades, the accelerator community has focused on the development of next-generation light sources, for example the diffraction-limited storage rings (DLSRs), which requires precision control of the electron beam energy and betatron tunes. This work is aimed at understanding magnet hysteresis effects on the electron beam energy and lattice focusing in the circular accelerators, and developing new methods to gain better control of these effects. In this paper, we will report our recent experimental study of the magnetic hysteresis effects and their impacts on the Duke storage ring lattice using the transverse feedback based precision tune measurement system. The major magnet hysteresis effects associated with magnet normalization and lattice ramping are carefully studied to determine an effective procedure for lattice preparation while maintaining a high degree of reproducibility of lattice focusing. The local hysteresis effects are also studied by measuring the betatron tune shifts resulted from adjusting the setting of a quadrupole. A new technique has been developed to precisely recover the focusing strength of the quadrupole by returning it to a proper setting to overcome the local hysteresis effect

    Frustrated FRET for high-contrast high-resolution two-photon imaging

    Get PDF
    Two-photon fluorescence microscopy has become increasingly popular in biomedical research as it allows high-resolution imaging of thick biological specimen with superior contrast and penetration than confocal microscopy. However, two-photon microscopy still faces two fundamental limitations: 1) image-contrast deterioration with imaging depth due to out-of-focus background and 2) diffraction-limited spatial resolution. Herein we propose to create and detect high-order (more than quadratic) nonlinear signals by harnessing the frustrated fluorescence resonance energy transfer (FRET) effect within a specially designed donor-acceptor probe pair. Two distinct techniques are described. In the first method, donor fluorescence generated by a two-photon laser at the focus is preferentially switched on and off by a modulated and focused one-photon laser beam that is able to block FRET via direct acceptor excitation. The resulting image, constructed from the enhanced donor fluorescence signal, turns out to be an overall three-photon process. In the second method, a two-photon laser at a proper wavelength is capable of simultaneously exciting both the donor and the acceptor. By sinusoidally modulating the two-photon excitation laser at a fundamental frequency ω, an overall four-photon signal can be isolated by demodulating the donor fluorescence at the third harmonic frequency 3ω. We show that both the image contrast and the spatial resolution of the standard two-photon fluorescence microscopy can be substantially improved by virtue of the high-order nonlinearity. This frustrated FRET approach represents a strategy that is based on extracting the inherent nonlinear photophysical response of the specially designed imaging probes

    Effective Absorption Enhancement in Small Molecule Organic Solar Cells by Employing Trapezoid Gratings

    Full text link
    We demonstrate the optical absorption has been enhanced in the small molecule organic solar cells by employing trapezoid grating structure. The enhanced absorption is mainly attributed to both waveguide modes and surface plasmon modes, which has been simulated by using finite-difference time-domain method. The simulated results show that the surface plasmon along the semitransparent metallic Ag anode is excited by introducing the periodical trapezoid gratings, which induce high intensity field increment in the donor layer. Meanwhile, the waveguide modes result a high intensity field in acceptor layer. The increment of field improves the absorption of organic solar cells, significantly, which has been demonstrated by simulating the electrical properties. The simulated results exhibiting 31 % increment of the short-circuit current has been achieved in the optimized device, which is supported by the experimental measurement. The power conversion efficiency of the grating sample obtained in experiment exhibits an enhancement of 7.7 %

    Mixed soliton solutions of the defocusing nonlocal nonlinear Schrodinger equation

    Full text link
    By using the Darboux transformation, we obtain two new types of exponential-and-rational mixed soliton solutions for the defocusing nonlocal nonlinear Schrodinger equation. We reveal that the first type of solution can display a large variety of interactions among two exponential solitons and two rational solitons, in which the standard elastic interaction properties are preserved and each soliton could be either the dark or antidark type. By developing the asymptotic analysis technique, we also find that the second type of solution can exhibit the elastic interactions among four mixed asymptotic solitons. But in sharp contrast to the common solitons, the asymptotic mixed solitons have the t-dependent velocities and their phase shifts before and after interaction also grow with |t| in the logarithmical manner. In addition, we discuss the degenerate cases for such two types of mixed soliton solutions when the four-soliton interaction reduces to a three-soliton or two-soliton interaction.Comment: 28 pages, 7 figure
    • …
    corecore