31,230 research outputs found
Vacuum induced Berry phases in single-mode Jaynes-Cummings models
Motivated by the work [Phys. Rev. Lett. 89, 220404 (2002)] for detecting the
vacuum-induced Berry phases with two-mode Jaynes-Cummings models (JCMs), we
show here that, for a parameter-dependent single-mode JCM, certain atom-field
states also acquire the photon-number-dependent Berry phases after the
parameter slowly changed and eventually returned to its initial value. This
geometric effect related to the field quantization still exists, even the filed
is kept in its vacuum state. Specifically, a feasible Ramsey interference
experiment with cavity quantum electrodynamics (QED) system is designed to
detect the vacuum-induced Berry phase.Comment: 10 pages, 4 figures
Switchable coupling between charge and flux qubits
We propose a hybrid quantum circuit with both charge and flux qubits
connected to a large Josephson junction that gives rise to an effective
inter-qubit coupling controlled by the external magnetic flux. This switchable
inter-qubit coupling can be used to transfer back and forth an arbitrary
superposition state between the charge qubit and the flux qubit working at the
optimal point. The proposed hybrid circuit provides a promising quantum memory
because the flux qubit at the optimal point can store the tranferred quantum
state for a relatively long time.Comment: 5 pages, 1 figur
Optical selection rules and phase-dependent adiabatic state control in a superconducting quantum circuit
We analyze the optical selection rules of the microwave-assisted transitions
in a flux qubit superconducting quantum circuit (SQC). We show that the
parities of the states relevant to the superconducting phase in the SQC are
well-defined when the external magnetic flux , then the
selection rules are same as the ones for the electric-dipole transitions in
usual atoms. When , the symmetry of the potential of
the artificial "atom'' is broken, a so-called -type "cyclic"
three-level atom is formed, where one- and two-photon processes can coexist. We
study how the population of these three states can be selectively transferred
by adiabatically controlling the electromagnetic field pulses. Different from
-type atoms, the adiabatic population transfer in our three-level
-atom can be controlled not only by the amplitudes but also by the
phases of the pulses
- …