730 research outputs found
Weakly-supervised Caricature Face Parsing through Domain Adaptation
A caricature is an artistic form of a person's picture in which certain
striking characteristics are abstracted or exaggerated in order to create a
humor or sarcasm effect. For numerous caricature related applications such as
attribute recognition and caricature editing, face parsing is an essential
pre-processing step that provides a complete facial structure understanding.
However, current state-of-the-art face parsing methods require large amounts of
labeled data on the pixel-level and such process for caricature is tedious and
labor-intensive. For real photos, there are numerous labeled datasets for face
parsing. Thus, we formulate caricature face parsing as a domain adaptation
problem, where real photos play the role of the source domain, adapting to the
target caricatures. Specifically, we first leverage a spatial transformer based
network to enable shape domain shifts. A feed-forward style transfer network is
then utilized to capture texture-level domain gaps. With these two steps, we
synthesize face caricatures from real photos, and thus we can use parsing
ground truths of the original photos to learn the parsing model. Experimental
results on the synthetic and real caricatures demonstrate the effectiveness of
the proposed domain adaptation algorithm. Code is available at:
https://github.com/ZJULearning/CariFaceParsing .Comment: Accepted in ICIP 2019, code and model are available at
https://github.com/ZJULearning/CariFaceParsin
Soft Methodology for Cost-and-error Sensitive Classification
Many real-world data mining applications need varying cost for different
types of classification errors and thus call for cost-sensitive classification
algorithms. Existing algorithms for cost-sensitive classification are
successful in terms of minimizing the cost, but can result in a high error rate
as the trade-off. The high error rate holds back the practical use of those
algorithms. In this paper, we propose a novel cost-sensitive classification
methodology that takes both the cost and the error rate into account. The
methodology, called soft cost-sensitive classification, is established from a
multicriteria optimization problem of the cost and the error rate, and can be
viewed as regularizing cost-sensitive classification with the error rate. The
simple methodology allows immediate improvements of existing cost-sensitive
classification algorithms. Experiments on the benchmark and the real-world data
sets show that our proposed methodology indeed achieves lower test error rates
and similar (sometimes lower) test costs than existing cost-sensitive
classification algorithms. We also demonstrate that the methodology can be
extended for considering the weighted error rate instead of the original error
rate. This extension is useful for tackling unbalanced classification problems.Comment: A shorter version appeared in KDD '1
- …