20,584 research outputs found

    Maxwell-Hydrodynamic Model for Simulating Nonlinear Terahertz Generation from Plasmonic Metasurfaces

    Get PDF
    The interaction between the electromagnetic field and plasmonic nanostructures leads to both the strong linear response and inherent nonlinear behavior. In this paper, a time-domain hydrodynamic model for describing the motion of electrons in plasmonic nanostructures is presented, in which both surface and bulk contributions of nonlinearity are considered. A coupled Maxwell-hydrodynamic system capturing full-wave physics and free electron dynamics is numerically solved with the parallel finite-difference time-domain (FDTD) method. The validation of the proposed method is presented to simulate linear and nonlinear responses from a plasmonic metasurface. The linear response is compared with the Drude dispersion model and the nonlinear terahertz emission from a difference-frequency generation process is validated with theoretical analyses. The proposed scheme is fundamentally important to design nonlinear plasmonic nanodevices, especially for efficient and broadband THz emitters.Comment: 8 pages, 7 figures, IEEE Journal on Multiscale and Multiphysics Computational Techniques, 201

    Theoretical Study of Corundum as an Ideal Gate Dielectric Material for Graphene Transistors

    Full text link
    Using physical insights and advanced first-principles calculations, we suggest that corundum is an ideal gate dielectric material for graphene transistors. Clean interface exists between graphene and Al-terminated (or hydroxylated) Al2O3 and the valence band offsets for these systems are large enough to create injection barrier. Remarkably, a band gap of {\guillemotright} 180 meV can be induced in graphene layer adsorbed on Al-terminated surface, which could realize large ON/OFF ratio and high carrier mobility in graphene transistors without additional band gap engineering and significant reduction of transport properties. Moreover, the band gaps of graphene/Al2O3 system could be tuned by an external electric field for practical applications

    Full Hydrodynamic Model of Nonlinear Electromagnetic Response in Metallic Metamaterials

    Full text link
    Applications of metallic metamaterials have generated significant interest in recent years. Electromagnetic behavior of metamaterials in the optical range is usually characterized by a local-linear response. In this article, we develop a finite-difference time-domain (FDTD) solution of the hydrodynamic model that describes a free electron gas in metals. Extending beyond the local-linear response, the hydrodynamic model enables numerical investigation of nonlocal and nonlinear interactions between electromagnetic waves and metallic metamaterials. By explicitly imposing the current continuity constraint, the proposed model is solved in a self-consistent manner. Charge, energy and angular momentum conservation laws of high-order harmonic generation have been demonstrated for the first time by the Maxwell-hydrodynamic FDTD model. The model yields nonlinear optical responses for complex metallic metamaterials irradiated by a variety of waveforms. Consequently, the multiphysics model opens up unique opportunities for characterizing and designing nonlinear nanodevices.Comment: 11 pages, 14 figure

    Search for globular clusters associated with the Milky Way dwarf galaxies using Gaia DR2

    Get PDF
    We report the result of searching for globular clusters (GCs) around 55 Milky Way satellite dwarf galaxies within the distance of 450 kpc from the Galactic Center except for the Large and Small Magellanic Clouds and the Sagittarius dwarf. For each dwarf, we analyze the stellar distribution of sources in Gaia DR2, selected by magnitude, proper motion, and source morphology. Using the kernel density estimation of stellar number counts, we identify eleven possible GC candidates. Crossed-matched with existing imaging data, all eleven objects are known either GCs or galaxies and only Fornax GC 1-6 among them are associated with the targeted dwarf galaxy. Using simulated GCs, we calculate the GC detection limit MVlimM_{\rm V}^{\rm lim} that spans the range from MVlim7M_{\rm V}^{\rm lim} \sim -7 for distant dwarfs to MVlim0M_{\rm V}^{\rm lim} \sim 0 for nearby systems. Assuming a Gaussian GC luminosity function, we compute that the completeness of the GC search is above 90 percent for most dwarf galaxies. We construct the 90 percent credible intervals/upper limits on the GC specific frequency SNS_{\rm N} of the MW dwarf galaxies: 12<SN<4712 < S_{\rm N} < 47 for Fornax, SN<20S_{\rm N} < 20 for the dwarfs with 12<MV<10-12 < M_{\rm V} < -10, SN<30S_{\rm N} < 30 for the dwarfs with 10<MV<7-10 < M_{\rm V} < -7, and SN<90S_{\rm N} < 90 for the dwarfs with MV>7M_{\rm V} > -7. Based on SNS_{\rm N}, we derive the probability of galaxies hosting GCs given their luminosity, finding that the probability of galaxies fainter than MV=9M_{\rm V} = -9 to host GCs is lower than 0.1

    Identifying RR Lyrae in the ZTF DR3 dataset

    Get PDF
    We present a RR Lyrae (RRL) catalogue based on the combination of the third data release of the Zwicky Transient Facility (ZTF DR3) and \textit{Gaia} EDR3. We use a multi-step classification pipeline relying on the Fourier decomposition fitting to the multi-band ZTF light curves and random forest classification. The resulting catalogue contains 71,755 RRLs with period and light curve parameter measurements and has completeness of 0.92 and purity of 0.92 with respect to the SOS \textit{Gaia} DR2 RRLs. The catalogue covers the Northern sky with declination 28\geq -28^\circ, its completeness is 0.8\gtrsim 0.8 for heliocentric distance 80\leq 80~kpc, and the most distant RRL at 132~kpc. Compared with several other RRL catalogues covering the Northern sky, our catalogue has more RRLs around the Galactic halo and is more complete at low Galactic latitude areas. Analysing the spatial distribution of RRL in the catalogue reveals the previously known major over-densities of the Galactic halo, such as the Virgo over-density and the Hercules-Aquila Cloud, with some evidence of an association between the two. We also analyse the Oosterhoff fraction differences throughout the halo, comparing it with the density distribution, finding increasing Oosterhoff I fraction at the elliptical radii between 16 and 32 kpc and some evidence of different Oosterhoff fractions across various halo substructures

    Engineering analysis of biological variables: An example of blood pressure over 1 day

    Get PDF
    Almost all variables in biology are nonstationarily stochastic. For these variables, the conventional tools leave us a feeling that some valuable information is thrown away and that a complex phenomenon is presented imprecisely. Here, we apply recent advances initially made in the study of ocean waves to study the blood pressure waves in the lung. We note first that, in a long wave train, the handling of the local mean is of predominant importance. It is shown that a signal can be described by a sum of a series of intrinsic mode functions, each of which has zero local mean at all times. The process of deriving this series is called the “empirical mode decomposition method.” Conventionally, Fourier analysis represents the data by sine and cosine functions, but no instantaneous frequency can be defined. In the new way, the data are represented by intrinsic mode functions, to which Hilbert transform can be used. Titchmarsh [Titchmarsh, E. C. (1948) Introduction to the Theory of Fourier Integrals (Oxford Univ. Press, Oxford)] has shown that a signal and i times its Hilbert transform together define a complex variable. From that complex variable, the instantaneous frequency, instantaneous amplitude, Hilbert spectrum, and marginal Hilbert spectrum have been defined. In addition, the Gumbel extreme-value statistics are applied. We present all of these features of the blood pressure records here for the reader to see how they look. In the future, we have to learn how these features change with disease or interventions

    Nonlinearity in the Dark: Broadband Terahertz Generation with Extremely High Efficiency

    Get PDF
    Plasmonic metamaterials and metasurfaces offer new opportunities in developing high performance terahertz emitters and detectors beyond the limitations of conventional nonlinear materials. However, simple meta-atoms for second-order nonlinear applications encounter fundamental trade-offs in the necessary symmetry breaking and local-field enhancement due to radiation damping that is inherent to the operating resonant mode and cannot be controlled separately. Here we present a novel concept that eliminates this restriction obstructing the improvement of terahertz generation efficiency in nonlinear metasurfaces based on metallic nanoresonators. This is achieved by combining a resonant dark-state metasurface, which locally drives nonlinear nanoresonators in the near field, with a specific spatial symmetry that enables destructive interference of the radiating linear moments of the nanoresonators, and perfect absorption via simultaneous electric and magnetic critical coupling of the pump radiation to the dark mode. Our proposal allows eliminating linear radiation damping, while maintaining constructive interference and effective radiation of the nonlinear components. We numerically demonstrate a giant second-order nonlinear susceptibility around Hundred-Billionth m/V, a one order improvement compared with the previously reported split-ring-resonator metasurface, and correspondingly, a 2 orders of magnitude enhanced terahertz energy extraction should be expected with our configuration under the same conditions. Our study offers a paradigm of high efficiency tunable nonlinear metadevices and paves the way to revolutionary terahertz technologies and optoelectronic nanocircuitry.Comment: 6 pages, 4 figure
    corecore