9 research outputs found

    Effects of Build Orientation on Surface Morphology and Bone Cell Activity of Additively Manufactured Ti6Al4V Specimens

    No full text
    Additive manufacturing of lightweight or functional structures by selective laser beam (SLM) or electron beam melting (EBM) is widespread, especially in the field of medical applications. SLM and EBM processes were applied to prepare Ti6Al4V test specimens with different surface orientations (0°, 45° and 90°). Roughness measurements of the surfaces were conducted and cell behavior on these surfaces was analyzed. Hence, human osteoblasts were seeded on test specimens to determine cell viability (metabolic activity, live-dead staining) and gene expression of collagen type 1 (Col1A1), matrix metalloprotease (MMP) 1 and its natural inhibitor, TIMP1, after 3 and 7 days. The surface orientation of specimens during the manufacturing process significantly influenced the roughness. Surface roughness showed significant impact on cellular viability, whereas differences between the time points day 3 and 7 were not found. Collagen type 1 mRNA synthesis rates in human osteoblasts were enhanced with increasing roughness. Both manufacturing techniques further influenced the induction of bone formation process in the cell culture. Moreover, the relationship between osteoblastic collagen type 1 mRNA synthesis rates and specimen orientation during the building process could be characterized by functional formulas. These findings are useful in the designing of biomedical applications and medical devices

    Experimental Characterization of the Primary Stability of Acetabular Press-Fit Cups with Open-Porous Load-Bearing Structures on the Surface Layer

    No full text
    Background: Nowadays, hip cups are being used in a wide range of design versions and in an increasing number of units. Their development is progressing steadily. In contrast to conventional methods of manufacturing acetabular cups, additive methods play an increasingly central role in the development progress. Method: A series of eight modified cups were developed on the basis of a standard press-fit cup with a pole flattening and in a reduced version. The surface structures consist of repetitive open-pore load-bearing textural elements aligned right-angled to the cup surface. We used three different types of unit cells (twisted, combined and combined open structures) for constructing of the surface structure. All cups were manufactured using selective laser melting (SLM) of titanium powder (Ti6Al4V). To evaluate the primary stability of the press fit cups in the artificial bone cavity, pull-out and lever-out tests were conducted. All tests were carried out under exact fit conditions. The closed-cell polyurethane (PU) foam, which was used as an artificial bone cavity, was characterized mechanically in order to preempt any potential impact on the test results. Results and conclusions: The pull-out forces as well as the lever moments of the examined cups differ significantly depending on the elementary cells used. The best results in pull-out forces and lever-out moments are shown by the press-fit cups with a combined structure. The results for the assessment of primary stability are related to the geometry used (unit cell), the dimensions of the unit cell, and the volume and porosity responsible for the press fit. Corresponding functional relationships could be identified. The findings show that the implementation of reduced cups in a press-fit design makes sense as part of the development work

    Experimental Characterization of the Primary Stability of Acetabular Press-Fit Cups with Open-Porous Load-Bearing Structures on the Surface Layer

    No full text
    Background: Nowadays, hip cups are being used in a wide range of design versions and in an increasing number of units. Their development is progressing steadily. In contrast to conventional methods of manufacturing acetabular cups, additive methods play an increasingly central role in the development progress. Method: A series of eight modified cups were developed on the basis of a standard press-fit cup with a pole flattening and in a reduced version. The surface structures consist of repetitive open-pore load-bearing textural elements aligned right-angled to the cup surface. We used three different types of unit cells (twisted, combined and combined open structures) for constructing of the surface structure. All cups were manufactured using selective laser melting (SLM) of titanium powder (Ti6Al4V). To evaluate the primary stability of the press fit cups in the artificial bone cavity, pull-out and lever-out tests were conducted. All tests were carried out under exact fit conditions. The closed-cell polyurethane (PU) foam, which was used as an artificial bone cavity, was characterized mechanically in order to preempt any potential impact on the test results. Results and conclusions: The pull-out forces as well as the lever moments of the examined cups differ significantly depending on the elementary cells used. The best results in pull-out forces and lever-out moments are shown by the press-fit cups with a combined structure. The results for the assessment of primary stability are related to the geometry used (unit cell), the dimensions of the unit cell, and the volume and porosity responsible for the press fit. Corresponding functional relationships could be identified. The findings show that the implementation of reduced cups in a press-fit design makes sense as part of the development work

    Influence of Synthetic Bone Substitutes on the Anchorage Behavior of Open-Porous Acetabular Cup

    No full text
    Background: The development in implants such as acetabular cups using additive manufacturing techniques is playing an increasingly important role in the healthcare industry. Method: This study compared the primary stability of four selectively laser-melted press-fit cups (Ti6Al4V) with open-porous, load-bearing structural elements on the surface. The aim was to assess whether the material of the artificial bone stock affects the primary stability of the acetabular cup. The surface structures consist of repeated open-porous, load-bearing elements orthogonal to the acetabular surface. Experimental pull-out and lever-out tests were performed on exact-fit and press-fit cups to evaluate the primary stability of the cups in different synthetic bone substitutes. The acetabular components were placed in three different commercially available synthetic materials (ROHACELL-IGF 110, SikaBlock M330, Sawbones Solid Rigid). Results & conclusions: Within the scope of the study, it was possible to show the differences in fixation strength between the tested acetabular cups depending on their design, the structural elements used, and the different bone substitute material. In addition, functional correlations could be found which provide a qualitative reference to the material density of the bone stock and the press-fit volume of the acetabular cups

    Comparison of Single Ti6Al4V Struts Made Using Selective Laser Melting and Electron Beam Melting Subject to Part Orientation

    No full text
    The use of additive manufacturing technologies to produce lightweight or functional structures is widespread. Especially Ti6Al4V plays an important role in this development field and parts are manufactured and analyzed with the aim to characterize the mechanical properties of open-porous structures and to generate scaffolds with properties specific to their intended application. An SLM and an EBM process were used respectively to fabricate the Ti6Al4V single struts. For mechanical characterization, uniaxial compression tests and hardness measurements were conducted. Furthermore, the struts were manufactured in different orientations for the determination of the mechanical properties. Roughness measurements and a microscopic characterization of the struts were also carried out. Some parts were characterized following heat treatment (hot isostatic pressing). A functional correlation was found between the compressive strength and the slenderness ratio (λ) as well as the equivalent diameter (d) and the height (L) of EBM and SLM parts. Hardness investigations revealed considerable differences related to the microstructure. An influence of heat treatment as well as of orientation could be determined. In this work, we demonstrate the influence of the fabrication quality of single struts, the roughness and the microstructure on mechanical properties as a function of orientation

    Specific Yielding of Selective Laser-Melted Ti6Al4V Open-Porous Scaffolds as a Function of Unit Cell Design and Dimensions

    No full text
    Bone loss in the near-vicinity of implants can be a consequence of stress shielding due to stiffness mismatch. This can be avoided by reducing implant stiffness, i.e., by implementing an open-porous structure. Three open-porous designs were therefore investigated (cubic, pyramidal and a twisted design). Scaffolds were fabricated by a selective laser-melting (SLM) process and material properties were determined by conducting uniaxial compression testing. The calculated elastic modulus values for the scaffolds varied between 3.4 and 26.3 GP and the scaffold porosities between 43% and 80%. A proportional linear correlation was found between the elastic modulus and the geometrical parameters, between the elastic modulus and the compressive strengths, as well as between the strut width-to-diameter ratio (a/d) and elastic modulus. Furthermore, we found a power-law relationship between porosity and the modulus of elasticity that characterizes specific yielding. With respect to scaffold porosity, the description of specific yielding behaviour offers a simple way to characterize the mechanical properties of open-porous structures and helps generate scaffolds with properties specific to their intended application. A direct comparison with human bone parameters is also possible. We generated scaffolds with mechanical properties sufficiently close to that of human cortical bone

    Effects of Build Orientation on Surface Morphology and Bone Cell Activity of Additively Manufactured Ti6Al4V Specimens

    No full text
    Additive manufacturing of lightweight or functional structures by selective laser beam (SLM) or electron beam melting (EBM) is widespread, especially in the field of medical applications. SLM and EBM processes were applied to prepare Ti6Al4V test specimens with different surface orientations (0°, 45° and 90°). Roughness measurements of the surfaces were conducted and cell behavior on these surfaces was analyzed. Hence, human osteoblasts were seeded on test specimens to determine cell viability (metabolic activity, live-dead staining) and gene expression of collagen type 1 (Col1A1), matrix metalloprotease (MMP) 1 and its natural inhibitor, TIMP1, after 3 and 7 days. The surface orientation of specimens during the manufacturing process significantly influenced the roughness. Surface roughness showed significant impact on cellular viability, whereas differences between the time points day 3 and 7 were not found. Collagen type 1 mRNA synthesis rates in human osteoblasts were enhanced with increasing roughness. Both manufacturing techniques further influenced the induction of bone formation process in the cell culture. Moreover, the relationship between osteoblastic collagen type 1 mRNA synthesis rates and specimen orientation during the building process could be characterized by functional formulas. These findings are useful in the designing of biomedical applications and medical devices

    Initial study on removing cellular residues from hydrostatic high-pressure treated allogeneic tissue using ultrasound

    No full text
    Hydrostatic high-pressure technology (HHD) devitalizes tissue quickly and gently, without negatively affecting the structural properties. HHD-treated tissues must be cleaned from devitalized cells. A partially automated, gentle, reproducible and timesaving rinsing test setup utilizing ultrasound is demonstrated in this study. The test setup is used to clean HHD-treated bone allografts of tissue residues and prevent microbiological contamination. A rinsing procedure is investigated. Residual DNA content determination is utilized to analyze cleaned bone allograft tissue for rinsing procedure evaluation
    corecore