38 research outputs found
Study on Therapeutic Action and Mechanism of TMZ Combined with RITA Against Glioblastoma
Background/Aims: Glioblastoma multiforme (GBM) is a malignant and aggressive central nervous system (CNS) tumor with high mortality and low survival rate. Effective treatment of GMB is a challenge worldwide. Temozolomide (TMZ) is a drug used to treat GBM, while the survival period of GBM patients with positive treatment remains less than 15 months. Reactivating p53 and Inducing Tumor Apoptosis (RITA) is a novel potential anti-cancer small molecular drug. Thus, it is essential to discover novel targets or develop effective drugs combination strategy to treat GBM. Methods: The U87 cells and U251 cells (p53 mutated) were treated with DMSO and 1, 5,10, 20 μM RITA, TMZ, RITA+TMA or PFT-α. The cell proliferation was measured using the MTS cell proliferation assay. The cell apoptosis was analyzed by Annexin V-FITC/PI Apoptosis Detection Kit. The key protein expression level was evaluated by WB. Molecular docking and molecular dynamics (MD) simulation methods were applied to simulate the interaction between RITA and ASK1. Results: Herein, we found that combination RITA and TMZ effectively inhibited the proliferation of U87 cells and promoted the apoptosis of U87 cells. Then the mechanism of RITA and TMZ treating GBM were further studied by detecting the expression of the proteins associating with p53 pathway, such as ASK1, Bax, and so on. RITA bound to the amino acids residues in the activation domain of the ASK1, then induced the conformation change of ASK1 receptor, activated ASK1 and caused a series of signal transduction, further resulted in the physiological effects. Conclusion: Taken together, the RITA suppressed the cell proliferation in glioblastoma via targeting ASK1
Uncovering the dispersion history, adaptive evolution and selection of wheat in China
Wheat was introduced to China approximately 4500 years ago, where it adapted over a span of time to various environments in agro-ecological growing zones. We investigated 717 Chinese and 14 Iranian/Turkish geographically diverse, locally adapted wheat landraces with 27,933 DArTseq (for 717 landraces) and 312,831 Wheat660K (for a subset of 285 landraces) markers. This study highlights the adaptive evolutionary history of wheat cultivation in China. Environmental stresses and independent selection efforts have resulted in considerable genome-wide divergence at the population level in Chinese wheat landraces. In total, 148 regions of the wheat genome show signs of selection in at least one geographic area. Our data show adaptive events across geographic areas, from the xeric northwest to the mesic south, along and among homoeologous chromosomes, with fewer variations in the D genome than in the A and B genomes. Multiple variations in interdependent functional genes, such as regulatory and metabolic genes controlling germination and flowering time were characterized, showing clear allelic frequency changes corresponding to the dispersion of wheat in China. Population structure and selection data reveal that Chinese wheat spread from the northwestern Caspian Sea region to south China, adapting during its agricultural trajectory to increasingly mesic and warm climatic areas
Colorless Semi-Alicyclic Copolyimides with High Thermal Stability and Solubility
A series of colorless copolyimide films with high thermal stability and good solubility are synthesized from (trifluoromethyl)biphenyl-4,4’-diamine (TFMB) with different 1,2,4,5-cyclohexanetetracarboxylic dianhydride (HPMDA) to 2,2-bis(3,4-dicarboxyphenyl)-hexafluoropropane (6FDA) dianhydride mole ratios through one-pot solution polycondensation. These copolyimide films exhibit excellent optical transparency (T400 > 90% and λ0 ~305–333 nm) with a thickness of 15 μm and good solubility in most organic solvents. The excellent optical properties are mainly attributed to the low inter- and intra-molecular charge transfer interactions due to the alicyclic structure and the strong electronegative CF3 groups. The glass transition temperature increases from 332 to 352 °C with increasing HPMDA content in the copolymers, while the thermal decomposition temperature is improved with increasing 6FDA content. These results indicate that the copolyimide films can be successfully utilized in the development of novel heat-resistant plastic substrates for the optoelectronic engineering applications
CAFA: A Checksum-Aware Fuzzing Assistant Tool for Coverage Improvement
Fuzzing is an effective technique to discover vulnerabilities that involves testing applications by constructing invalid input data. However, for applications with checksum mechanism, fuzzing can only achieve low coverage because samples generated by the fuzzer are possibly incapable of passing the checksum verification. To solve this problem, most current fuzzers advise the user to comment out the checksum verification code manually, but it requires considerable time to audit the source code to identify the checksum point corresponding to checksum verification. In this paper, we present a novel approach based on taint analysis to identify the checksum point automatically. To implement this approach, the checksum-aware fuzzing assistant tool (CAFA) is designed. After the checksum point is identified, the application is statically patched in an antilogical manner at the checksum point. The fuzzing tool then tests the patched program to bypass the checksum verification. To evaluate CAFA, we use it to assist the American Fuzzy Lop (AFL) tool in fuzzing eight real-world applications with known input specification. The experimental results show that CAFA can accurately and quickly identify the checksum points and greatly improve the coverage of AFL. With the help of CAFA, multiple buffer overflow vulnerabilities have been discovered in the newest ImageMagick and RAR applications