608 research outputs found
Elementary operations for quantum logic with a single trapped two-level cold ion beyond Lamb-Dicke limit
A simple alternative scheme for implementing quantum gates with a single
trapped cold two-level ion beyond the Lamb-Dicke (LD) limit is proposed. Basing
on the quantum dynamics for the laser-ion interaction described by a
generalized Jaynes-Cummings model, one can introduce two kinds of elementary
quantum operations i.e., the simple rotation on the bare atomic state,
generated by applying a resonant pulse, and the joint operation on the internal
and external degrees of the ion, performed by using an off-resonant pulse.
Several typical quantum gates, including Hadamard gate, controlled-Z and
controlled-NOT gates , can thus be implemented exactly by using these
elementary operations. The experimental parameters including the LD parameter
and the durations of the applied laser pulses, for these implementation are
derived analytically and numerically. Neither the LD approximation for the
laser-ion interaction nor the auxiliary atomic level is needed in the present
scheme.Comment: 5 pages, no figure, to appear in Opt. Com
Calculations on the Size Effects of Raman Intensities of Silicon Quantum Dots
Raman intensities of Si quantum dots (QDs) with up to 11,489 atoms (about 7.6
nm in diameter) for different scattering configurations are calculated. First,
phonon modes in these QDs, including all vibration frequencies and vibration
amplitudes, are calculated directly from the lattice dynamic matrix by using a
microscopic valence force field model combined with the group theory. Then the
Raman intensities of these quantum dots are calculated by using a
bond-polarizability approximation. The size effects of the Raman intensity in
these QDs are discussed in detail based on these calculations. The calculations
are compared with the available experimental observation. We are expecting that
our calculations can further stimulate more experimental measurements.Comment: 21 pages, 7 figure
Anterior Hippocampus and Goal-Directed Spatial Decision Making
Contains fulltext :
115487.pdf (publisher's version ) (Open Access
Development of portable NMR polarimeter system for polarized HD target
A portable NMR polarimeter system has been developed to measure the
polarization of a polarized Hydrogen-Deuteride (HD) target for hadron
photoproduction experiments at SPring-8. The polarized HD target is produced at
the Research Center for Nuclear Physics (RCNP), Osaka university and is
transported to SPring-8. The HD polarization should be monitored at both
places. We have constructed the portable NMR polarimeter system by replacing
the devices in the conventional system with the software system with PCI
eXtensions for Instrumentation (PXI). The weight of the NMR system is downsized
from 80 kg to 7 kg, and the cost is reduced to 25%. We check the performance of
the portable NMR polarimeter system. The signal-to-noise (S/N) ratio of the NMR
signal for the portable system is about 50% of that for the conventional NMR
system. This performance of the portable NMR system is proved to be compatible
with the conventional NMR system for the polarization measurement.Comment: 6 page, 8 figures, 2011/Mar/9 Replace Author
Transpolar arc observation after solar wind entry into the high-latitude magnetosphere
Recently, Cluster observations have revealed the presence of new regions of solar wind plasma entry at the high-latitude magnetospheric lobes tailward of the cusp region, mostly during periods of northward interplanetary magnetic field. In this study, observations from the Global Ultraviolet Imager (GUVI) experiment on board the TIMED spacecraft and Wideband Imaging Camera imager on board the IMAGE satellite are used to investigate a possible link between solar wind entry and the formation of transpolar arcs in the polar cap. We focus on a case when transpolar arc formation was observed twice right after the two solar wind entry events were detected by the Cluster spacecraft. In addition, GUVI and IMAGE observations show a simultaneous occurrence of auroral activity at low and high latitudes after the second entry event, possibly indicating a two-part structure of the continuous band of the transpolar arc
Autosis is a Na+,K+-ATPase-regulated form of cell death triggered by autophagy-inducing peptides, starvation, and hypoxia-ischemia.
A long-standing controversy is whether autophagy is a bona fide cause of mammalian cell death. We used a cell-penetrating autophagy-inducing peptide, Tat-Beclin 1, derived from the autophagy protein Beclin 1, to investigate whether high levels of autophagy result in cell death by autophagy. Here we show that Tat-Beclin 1 induces dose-dependent death that is blocked by pharmacological or genetic inhibition of autophagy, but not of apoptosis or necroptosis. This death, termed "autosis," has unique morphological features, including increased autophagosomes/autolysosomes and nuclear convolution at early stages, and focal swelling of the perinuclear space at late stages. We also observed autotic death in cells during stress conditions, including in a subpopulation of nutrient-starved cells in vitro and in hippocampal neurons of neonatal rats subjected to cerebral hypoxia-ischemia in vivo. A chemical screen of ~5,000 known bioactive compounds revealed that cardiac glycosides, antagonists of Na(+),K(+)-ATPase, inhibit autotic cell death in vitro and in vivo. Furthermore, genetic knockdown of the Na(+),K(+)-ATPase α1 subunit blocks peptide and starvation-induced autosis in vitro. Thus, we have identified a unique form of autophagy-dependent cell death, a Food and Drug Administration-approved class of compounds that inhibit such death, and a crucial role for Na(+),K(+)-ATPase in its regulation. These findings have implications for understanding how cells die during certain stress conditions and how such cell death might be prevented
Modified f(G) gravity models with curvature-matter coupling
A modified f(G) gravity model with coupling between matter and geometry is
proposed, which is described by the product of the Lagrange density of the
matter and an arbitrary function of the Gauss-Bonnet term. The field equations
and the equations of motion corresponding to this model show the
non-conservation of the energy-momentum tensor, the presence of an extra-force
acting on test particles and the non-geodesic motion. Moreover, the energy
conditions and the stability criterion at de Sitter point in the modified f(G)
gravity models with curvature-matter coupling are derived, which can degenerate
to the well-known energy conditions in general relativity. Furthermore, in
order to get some insight on the meaning of these energy conditions, we apply
them to the specific models of f(G) gravity and the corresponding constraints
on the models are given. In addition, the conditions and the candidate for
late-time cosmic accelerated expansion in the modified f(G) gravity are studied
by means of conditions of power-law expansion and the equation of state of
matter less than -1/ 3 .Comment: 13 pages, 4 figure
Loss of viability during freeze-thaw of intact and adherent human embryonic stem cells with conventional slow-cooling protocols is predominantly due to apoptosis rather than cellular necrosis
10.1007/s11373-005-9051-9Journal of Biomedical Science133433-44
- …