1,471 research outputs found

    Cancer Gene Therapy with Small Oligonucleotides

    Get PDF
    Griffith Health, School of Medical ScienceFull Tex

    Antitumor Activity of Artemisinin and Its Derivatives: From a Well-Known Antimalarial Agent to a Potential Anticancer Drug

    Get PDF
    Improvement of quality of life and survival of cancer patients will be greatly enhanced by the development of highly effective drugs to selectively kill malignant cells. Artemisinin and its analogs are naturally occurring antimalarials which have shown potent anticancer activity. In primary cancer cultures and cell lines, their antitumor actions were by inhibiting cancer proliferation, metastasis, and angiogenesis. In xenograft models, exposure to artemisinins substantially reduces tumor volume and progression. However, the rationale for the use of artemisinins in anticancer therapy must be addressed by a greater understanding of the underlying mechanisms involved in their cytotoxic effects. The primary targets for artemisinin and the chemical base for its preferential effects on heterologous tumor cells need yet to be elucidated. The aim of this paper is to provide an overview of the recent advances and new development of this class of drugs as potential anticancer agents

    Cancer gene therapy : developments and future perspectives

    Get PDF
    Griffith Health, School of Medical ScienceFull Tex

    A new dawn for the use of traditional Chinese medicine in cancer therapy

    Get PDF
    Although traditional Chinese medicine has benefitted one fifth of the world's population in treating a plethora of diseases, its acceptance as a real therapeutic option by the West is only now emerging. In light of a new wave of recognition being given to traditional Chinese medicine by health professionals and regulatory bodies in the West, an understanding of their molecular basis and highlighting potential future applications of a proven group of traditional Chinese medicine in the treatment of a variety of cancers is crucial – this is where their calling holds much hope and promise in both animal and human trials. Furthermore, the rationale for combining conventional agents and modern biotechnological approaches to the delivery of traditional Chinese medicine is an avenue set to revolutionize the future practice of cancer medicine – and this may well bring on a new dawn of therapeutic strategies where East truly meets West

    Clostridial spores for cancer therapy : targeting solid tumour microenvironment

    Get PDF
    Solid tumour accounts for 90% of all cancers. The current treatment approach for most solid tumours is surgery, however it is limited to early stage tumours. Other treatment options such as chemotherapy and radiotherapy are non-selective, thus causing damage to both healthy and cancerous tissue. Past research has focused on understanding tumour cells themselves, and conventional wisdom has aimed at targeting these cells directly. Recent research has shifted towards understanding the tumour microenvironment and it’s differences from that of healthy cells/tissues in the body and then to exploit these differences for treatmeat of the tumour. One such approach is utilizing anaerobic bacteria. Several strains of bacteria have been shown to selectively colonize in solid tumours, making them valuable tools for selective tumour targeting and destruction. Amongst them, the anaerobic Clostridium has shown great potential in penetration and colonization of the hypoxic and necrotic areas of the tumour microenvironment, causing significant oncolysis as well as enabling the delivery of therapeutics directly to the tumour in situ. Various strategies utilizing Clostridium are currently being investigated, and represent a novel area of emerging cancer therapy. This review provides an update review of tumour microenvironment as well as summary of the progresses and current status of Clostridial spore-based cancer therapies

    Centrality, system size and energy dependences of charged-particle pseudo-rapidity distribution

    Full text link
    Utilizing the three-fireball picture within the quark combination model, we study systematically the charged particle pseudorapidity distributions in both Au+Au and Cu+Cu collision systems as a function of collision centrality and energy, sNN=\sqrt{s_{NN}}= 19.6, 62.4, 130 and 200 GeV, in full pseudorapidity range. We find that: (i)the contribution from leading particles to dNch/dηdN_{ch}/d\eta distributions increases with the decrease of the collision centrality and energy respectively; (ii)the number of the leading particles is almost independent of the collision energy, but it does depend on the nucleon participants NpartN_{part}; (iii)if Cu+Cu and Au+Au collisions at the same collision energy are selected to have the same NpartN_{part}, the resulting of charged particle dN/dηdN/d\eta distributions are nearly identical, both in the mid-rapidity particle density and the width of the distribution. This is true for both 62.4 GeV and 200 GeV data. (iv)the limiting fragmentation phenomenon is reproduced. (iiv) we predict the total multiplicity and pseudorapidity distribution for the charged particles in Pb+Pb collisions at sNN=5.5\sqrt{s_{NN}}= 5.5 TeV. Finally, we give a qualitative analysis of the Nch/N_{ch}/ and dNch/dη/η0dN_{ch}/d\eta/|_{\eta\approx0} as function of sNN\sqrt{s_{NN}} and NpartN_{part} from RHIC to LHC.Comment: 12 pages, 8 figure

    Aptamer therapeutics: the 21st century\u27s magic bullet of nanomedicine

    Full text link
    Aptamers, also known as chemical antibodies, are short single-stranded DNA, RNA or peptide molecules. These molecules can fold into complex three-dimensional structures and bind to target molecules with high affinity and specificity. The nucleic acid aptamers are selected from combinatorial libraries by an iterative in vitro selection procedure known as systematic evolution of ligands by exponential enrichment (SELEX). As a new class of therapeutics and drug targeting entities, bivalent and multivalent aptamer-based molecules are emerging as highly attractive alternatives to monoclonal antibodies as targeted therapeutics.Aptamers have several advantages, offering the possibility of overcoming limitations of antibodies: 1) they can be selected against toxic or non-immunogenic targets; 2) aptamers can be chemically modified by using modified nucleotides to enhance their stability in biological fluids or via incorporating reporter molecules, radioisotopes and functional groups for their detection and immobilization; 3) they have very low immunogenicity; 4) they display high stability at room temperature, in extreme pH, or solvent; 5) once selected, they can be chemically synthesized free from cell- culturederived contaminants, and they can be manufactured at any time, in large amounts, at relatively low cost and reproducibly; 6) they are smaller and thus can diffuse more rapidly into tissues and organs, leading to faster targeting in drug delivery; 7) they have lower molecular weight that can lead to faster body clearance, resulting in a low background noise for imaging and minimizing the radiation dose to the patient in diagnostic imaging. Thus, the high selectivity and sensitivity, ease of screening and production, chemical versatility as well as stability make aptamers a class of highly attractive agents for the development of novel therapeutics, targeted drug delivery vehicles and molecular imaging.In the review, we will discuss the latest technological advances in developing aptamers, its application as a novel class of drug on its own, as well as in surface functionalization of both polymer nanoparticles or nanoliposomes in the treatment of cancer, viral and autoimmune diseases

    Chansu inhibits the expression of cortactin in colon cancer cell lines in vitro and in vivo

    Get PDF
    Background: Chansu is a transitional Chinese medicine that has been used for centuries as therapy for inflammation, anaesthesia and arrhythmia in China and other Asian countries. Recently, it has also been used for anti-cancer purposes. We have previously shown that Chansu has a huge pro-apoptotic potential on colon cancer cells, but to date the detailed mechanism of this action is not well understood. Methods: One of the major components of Chansu, Cinobufagin (CBF) was used to treat cancer cells. The expressions of levels of cortactin, an important factor in tumour progression and cancer invasion, were assessed in in vitro and in vivo experiments. Additional analyses were performed in subcellular protein fractions and immune-fluorescent staining was used to define cortactin protein expression and the changes of location in CBF-treated cells. Results: CBF strongly inhibited the expression of cortactin in HCT116 cells. There were reductions of both mRNA transcription and protein synthesis, which were more significant in the absence of oxygen in vitro. In addition, nuclear translocation of cortactin was observed in HCT116 cells post CBF exposure but not in the negative control, indicating that CBF is likely to interrupt co-localisation of cortactin to cytoskeletal proteins. Most importantly, CBF could diminish the expression of cortactin in human HCT116 xenograft tumours in nude mouse in vivo. Conclusions: CBF inhibits cortactin expression and nuclear translocation in colon cancer cells in vitro and in mouse models bearing human colon tumour in vivo, suggesting it might disrupt actin-regulated cell movement. Thus, CBF or Chansu could be developed as an effective anti-cancer therapy to stop local invasion and metastasis

    The mechanisms of Chansu in inducing efficient apoptosis in colon cancer cells

    Get PDF
    Chansu is one of the most widely used traditional Chinese medicines in China, Japan, and other Southeast Asian countries primarily for antipain, anti-inflammation, and recently anticancer. Over 10 recipes and remedies contained Chansu, which are easily available in pharmacies and hospitals, but the mechanisms of action were not clearly articulated. In the present study, Cinobufagin (CBF), the major compound of Chansu, was employed as a surrogate marker to determine its ability in inducing cancer cell death. As expected, CBF has significant cancer-killing capacity for a range of cancers, but such ability differs markedly. Colon and prostate cancers are more sensitive than skin and lung cancers. Interestingly, cancer cells die through apoptotic pathway either being biphasic caspase- 3-dependent (HCT116) or independent (HT29). Multipathway analysis reveals that CBF-induced apoptosis is likely modulated by the hypoxia-inducing factor-1 alpha subunit (HIF-

    Salivary microRNA miR-let-7a-5p and miR-3928 could be used as potential diagnostic bio-markers for head and neck squamous cell carcinoma

    Get PDF
    Backgrounds MicroRNAs (miRNA) are a class of non-protein-coding RNAs that have significant biological and pathological functions. The importance of miRNAs as potential cancer diagnostic biomarkers is gaining attention due to their influence in the regulation of cellular processes such as cell differentiation, proliferation and apoptosis. The aim of this study was to identify significant miRNAs from saliva as potential diagnostic biomarkers in the early diagnosis and prognosis of head and neck squamous cell carcinoma (HNSCC). Materials and methods Five differentially expressed miRNAs (miR-7703, miR- let-7a-5p, miR- 345-5p, miR- 3928 and miR- 1470) were selected from Next Generation Sequencing (NGS) miRNA data generated from our previous study using saliva of 12 HNSCC patients and 12 healthy controls. Their differential expressed miRNAs were subsequently validated by RT-qPCR using saliva samples from healthy controls (n = 80) and HNSCC patients (n = 150). Total RNA was isolated from 150 saliva samples of HNSCC patients and was transcripted into cDNA by TaqMan MicroRNA Reverse Transcription Kit. Using quantitative RT-PCR analysis, salivary miRNAs were identified in HNSCC patients (n = 150) and healthy controlled cases (n = 80). T-tests were used to compare the differences among the various clinical variants. Results On average 160 ng/μl was isolated from 500 μl of saliva. Overall, a good correlation observed between the HNSCC and some of miRNAs expression levels. Salivary miR-let-7a-5p (P<0.0001) and miR-3928 (P< 0.01) were significantly down regulated in saliva of HNSCC patients relative to age and sex-matched healthy controls. A number of salivary miRNAs (miR-let-7a-5p and miR-3928) were correlated with lymph node metastasis (p = 0.003, p = 0.049) and tumour size (p = 0.01, p = 0.02), respectively. However, our preliminary analysis showed no significant differences in salivary miR-1470, miR-345-5p or miR-7703 expression between patients and healthy controls. Most notably, our analysis showed that salivary miR-let-7a-5p and miR-3928 expression levels have significant sensitivity and specificity to distinguish between patients with HNSCC and healthy controls. Conclusion This study concluded that salivary miR-let-7a-5p and miR-3928 has the potential to be novel non-invasive biomarkers for early detection and prognosis of HNSCC
    corecore