106 research outputs found

    Subsidence in Coastal Cities Throughout the World Observed by InSAR

    Get PDF
    We measured subsidence rates in 99 coastal cities around the world between 2015 and 2020 using the PS Interferometric Synthetic Aperture Radar method and Sentinel-1 data. In most cities, part of the land is subsiding faster than sea level is rising. If subsidence continues at present rates, these cities will be challenged by flooding much sooner than projected by sea level rise models. The most rapid subsidence is occurring in South, Southeast, and East Asia. However, rapid subsidence is also happening in North America, Europe, Africa, and Australia. Human activity—primarily groundwater extraction—is likely the main cause of this subsidence. Expanded monitoring and policy interventions are required to reduce subsidence rates and minimize their consequences

    The Weight of New York City: Possible Contributions to Subsidence From Anthropogenic Sources

    Get PDF
    New York City faces accelerating inundation risk from sea level rise, subsidence, and increasing storm intensity from natural and anthropogenic causes. Here we calculate a previously unquantified contribution to subsidence from the cumulative mass and downward pressure exerted by the built environment of the city. We enforce that load distribution in a multiphysics finite element model to calculate expected subsidence. Complex surface geology requires multiple rheological soil models to be applied; clay rich soils and artificial fill are calculated to have the highest post-construction subsidence as compared with more elastic soils. Minimum and maximum calculated building subsidence ranges from 0 to 600 mm depending on soil/rock physical parameters and foundation modes. We compare modeled subsidence and surface geology to observed subsidence rates from satellite data (Interferometric Synthetic Aperture Radar and Global Positioning System). The comparison is complicated because the urban load has accumulated across a much longer period than measured subsidence rates, and there are multiple causes of subsidence. Geodetic measurements show a mean subsidence rate of 1–2 mm/year across the city that is consistent with regional post-glacial deformation, though we find some areas of significantly greater subsidence rates. Some of this deformation is consistent with internal consolidation of artificial fill and other soft sediment that may be exacerbated by recent building loads, though there are many possible causes. New York is emblematic of growing coastal cities all over the world that are observed to be subsiding (Wu et al., 2022, https://doi.org/10.1029/2022GL098477), meaning there is a shared global challenge of mitigation against a growing inundation hazard

    Long-term Outcome of Globus Pallidus Internus Deep Brain Stimulation in Patients With Tourette Syndrome

    Get PDF
    Objective: To evaluate the effectiveness of deep brain stimulation (DBS) of the globus pallidus internus (GPi) on tic severity and common comorbidities in patients with severe Tourette syndrome that is refractory to pharmacological treatment and psychotherapy

    Ionic Dipolar Switching Hinders Charge Collection in Perovskite Solar Cells with Normal and Inverted Hysteresis

    Get PDF
    Drift-diffusion modeling of the ionic dipole switching from the measurement of fast scanned and long pre-biased electrical response is proposed as a novel protocol for evaluation of limit hysteretic effects in perovskite solar cells. Up to eight systems were measured including CH3NH3PbI3, Cs0.1FA0.74MA0.13PbI2.48Br0.39 and FA0.83MA0.17Pb1.1Br0.22I2.98 3D perovskite absorbers, as well as 2D capping layers towards the selective contacts. We show systematic hysteretic patterns, even among typical hysteresis-free devices, including normal and inverted hysteresis as general dissimilar trend between CH3NH3PbI3 and mixed perovskite cells, respectively. Particularly, strong changes in the short-circuit current density ( Jsc ) were identified, in addition to different trends affecting the fill factor (FF) and the open-circuit voltage (Voc ). The changes in Jsc were analyzed with state-of-the-art numerical drift-diffusion simulations concluding in an important reduction in the charge collection due to ionic distribution switching depending on the pre-biasing protocol and the type of absorbing perovskite. It is shown that mixed perovskites inhibit ionic dipolar switching. In addition, our calculi signal on the required conditions for the occurrence of inverted hysteresis and changes in the Voc . Regarding the FF and Voc patterns a new empirical approach is introduced and corresponding interpretations are proposed

    The Long-Baseline Neutrino Experiment: Exploring Fundamental Symmetries of the Universe

    Get PDF
    The preponderance of matter over antimatter in the early Universe, the dynamics of the supernova bursts that produced the heavy elements necessary for life and whether protons eventually decay --- these mysteries at the forefront of particle physics and astrophysics are key to understanding the early evolution of our Universe, its current state and its eventual fate. The Long-Baseline Neutrino Experiment (LBNE) represents an extensively developed plan for a world-class experiment dedicated to addressing these questions. LBNE is conceived around three central components: (1) a new, high-intensity neutrino source generated from a megawatt-class proton accelerator at Fermi National Accelerator Laboratory, (2) a near neutrino detector just downstream of the source, and (3) a massive liquid argon time-projection chamber deployed as a far detector deep underground at the Sanford Underground Research Facility. This facility, located at the site of the former Homestake Mine in Lead, South Dakota, is approximately 1,300 km from the neutrino source at Fermilab -- a distance (baseline) that delivers optimal sensitivity to neutrino charge-parity symmetry violation and mass ordering effects. This ambitious yet cost-effective design incorporates scalability and flexibility and can accommodate a variety of upgrades and contributions. With its exceptional combination of experimental configuration, technical capabilities, and potential for transformative discoveries, LBNE promises to be a vital facility for the field of particle physics worldwide, providing physicists from around the globe with opportunities to collaborate in a twenty to thirty year program of exciting science. In this document we provide a comprehensive overview of LBNE's scientific objectives, its place in the landscape of neutrino physics worldwide, the technologies it will incorporate and the capabilities it will possess.Comment: Major update of previous version. This is the reference document for LBNE science program and current status. Chapters 1, 3, and 9 provide a comprehensive overview of LBNE's scientific objectives, its place in the landscape of neutrino physics worldwide, the technologies it will incorporate and the capabilities it will possess. 288 pages, 116 figure

    The JCMT BISTRO Survey: Studying the Complex Magnetic Field of L43

    Get PDF
    We present observations of polarized dust emission at 850 ÎŒm from the L43 molecular cloud, which sits in the Ophiuchus cloud complex. The data were taken using SCUBA-2/POL-2 on the James Clerk Maxwell Telescope as a part of the BISTRO large program. L43 is a dense (NH 10 22 2 ~ –1023 cm−2) complex molecular cloud with a submillimeter-bright starless core and two protostellar sources. There appears to be an evolutionary gradient along the isolated filament that L43 is embedded within, with the most evolved source closest to the Sco OB2 association. One of the protostars drives a CO outflow that has created a cavity to the southeast. We see a magnetic field that appears to be aligned with the cavity walls of the outflow, suggesting interaction with the outflow. We also find a magnetic field strength of up to ∌160 ± 30 ÎŒG in the main starless core and up to ∌90 ± 40 ÎŒG in the more diffuse, extended region. These field strengths give magnetically super- and subcritical values, respectively, and both are found to be roughly trans-AlfvĂ©nic. We also present a new method of data reduction for these denser but fainter objects like starless cores

    Filamentary Network and Magnetic Field Structures Revealed with BISTRO in the High-mass Star-forming Region NGC 2264: Global Properties and Local Magnetogravitational Configurations

    Get PDF
    We report 850 Όm continuum polarization observations toward the filamentary high-mass star-forming region NGC 2264, taken as part of the B-fields In STar forming Regions Observations large program on the James Clerk Maxwell Telescope. These data reveal a well-structured nonuniform magnetic field in the NGC 2264C and 2264D regions with a prevailing orientation around 30° from north to east. Field strength estimates and a virial analysis of the major clumps indicate that NGC 2264C is globally dominated by gravity, while in 2264D, magnetic, gravitational, and kinetic energies are roughly balanced. We present an analysis scheme that utilizes the locally resolved magnetic field structures, together with the locally measured gravitational vector field and the extracted filamentary network. From this, we infer statistical trends showing that this network consists of two main groups of filaments oriented approximately perpendicular to one another. Additionally, gravity shows one dominating converging direction that is roughly perpendicular to one of the filament orientations, which is suggestive of mass accretion along this direction. Beyond these statistical trends, we identify two types of filaments. The type I filament is perpendicular to the magnetic field with local gravity transitioning from parallel to perpendicular to the magnetic field from the outside to the filament ridge. The type II filament is parallel to the magnetic field and local gravity. We interpret these two types of filaments as originating from the competition between radial collapsing, driven by filament self-gravity, and longitudinal collapsing, driven by the region's global gravity

    Filamentary Network and Magnetic Field Structures Revealed with BISTRO in the High-Mass Star-Forming Region NGC2264 : Global Properties and Local Magnetogravitational Configurations

    Full text link
    We report 850 Ό\mum continuum polarization observations toward the filamentary high-mass star-forming region NGC 2264, taken as part of the B-fields In STar forming Regions Observations (BISTRO) large program on the James Clerk Maxwell Telescope (JCMT). These data reveal a well-structured non-uniform magnetic field in the NGC 2264C and 2264D regions with a prevailing orientation around 30 deg from north to east. Field strengths estimates and a virial analysis for the major clumps indicate that NGC 2264C is globally dominated by gravity while in 2264D magnetic, gravitational, and kinetic energies are roughly balanced. We present an analysis scheme that utilizes the locally resolved magnetic field structures, together with the locally measured gravitational vector field and the extracted filamentary network. From this, we infer statistical trends showing that this network consists of two main groups of filaments oriented approximately perpendicular to one another. Additionally, gravity shows one dominating converging direction that is roughly perpendicular to one of the filament orientations, which is suggestive of mass accretion along this direction. Beyond these statistical trends, we identify two types of filaments. The type-I filament is perpendicular to the magnetic field with local gravity transitioning from parallel to perpendicular to the magnetic field from the outside to the filament ridge. The type-II filament is parallel to the magnetic field and local gravity. We interpret these two types of filaments as originating from the competition between radial collapsing, driven by filament self-gravity, and the longitudinal collapsing, driven by the region's global gravity.Comment: Accepted for publication in the Astrophysical Journal. 43 pages, 32 figures, and 4 tables (including Appendix

    Comprehensive and Integrated Genomic Characterization of Adult Soft Tissue Sarcomas

    Get PDF
    Sarcomas are a broad family of mesenchymal malignancies exhibiting remarkable histologic diversity. We describe the multi-platform molecular landscape of 206 adult soft tissue sarcomas representing 6 major types. Along with novel insights into the biology of individual sarcoma types, we report three overarching findings: (1) unlike most epithelial malignancies, these sarcomas (excepting synovial sarcoma) are characterized predominantly by copy-number changes, with low mutational loads and only a few genes (, , ) highly recurrently mutated across sarcoma types; (2) within sarcoma types, genomic and regulomic diversity of driver pathways defines molecular subtypes associated with patient outcome; and (3) the immune microenvironment, inferred from DNA methylation and mRNA profiles, associates with outcome and may inform clinical trials of immune checkpoint inhibitors. Overall, this large-scale analysis reveals previously unappreciated sarcoma-type-specific changes in copy number, methylation, RNA, and protein, providing insights into refining sarcoma therapy and relationships to other cancer types

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∌99% of the euchromatic genome and is accurate to an error rate of ∌1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead
    • 

    corecore