6,090 research outputs found

    Bi-collinear antiferromagnetic order in the tetragonal α\alpha-FeTe

    Full text link
    By the first-principles electronic structure calculations, we find that the ground state of PbO-type tetragonal α\alpha-FeTe is in a bi-collinear antiferromagnetic state, in which the Fe local moments (2.5μB\sim2.5\mu_B) are ordered ferromagnetically along a diagonal direction and antiferromagnetically along the other diagonal direction on the Fe square lattice. This bi-collinear order results from the interplay among the nearest, next nearest, and next next nearest neighbor superexchange interactions J1J_1, J2J_2, and J3J_3, mediated by Te 5p5p-band. In contrast, the ground state of α\alpha-FeSe is in the collinear antiferromagnetic order, similar as in LaFeAsO and BaFe2_2As2_2.Comment: 5 pages and 5 figure

    Sliding Mode Control of Cable-Driven Redundancy Parallel Robot with 6 DOF Based on Cable-Length Sensor Feedback

    Get PDF
    The sliding mode control of the cable-driven redundancy parallel robot with six degrees of freedom is studied based on the cable-length sensor feedback. Under the control scheme of task space coordinates, the cable length obtained by the cable-length sensor is used to solve the forward kinematics of the cable-driven redundancy parallel robot in real-time, which is treated as the feedback for the control system. First, the method of forward kinematics of the cable-driven redundancy parallel robot is proposed based on the tetrahedron method and Levenberg-Marquardt method. Then, an iterative initial value estimation method for the Levenberg-Marquardt method is proposed. Second, the sliding mode control method based on the exponential approach law is used to control the effector of the robot, and the influence of the sliding mode parameters on control performance is simulated. Finally, a six-degree-of-freedom position tracking experiment is carried out on the principle prototype of the cable-driven redundancy parallel robot. The experimental results show that the robot can accurately track the desired position in six directions, which indicates that the control method based on the cable-length sensor feedback for the cable-driven redundancy parallel robot is effective and feasible

    Polytypism and Unexpected Strong Interlayer Coupling of two-Dimensional Layered ReS2

    Full text link
    The anisotropic two-dimensional (2D) van der Waals (vdW) layered materials, with both scientific interest and potential application, have one more dimension to tune the properties than the isotropic 2D materials. The interlayer vdW coupling determines the properties of 2D multi-layer materials by varying stacking orders. As an important representative anisotropic 2D materials, multilayer rhenium disulfide (ReS2) was expected to be random stacking and lack of interlayer coupling. Here, we demonstrate two stable stacking orders (aa and a-b) of N layer (NL, N>1) ReS2 from ultralow-frequency and high-frequency Raman spectroscopy, photoluminescence spectroscopy and first-principles density functional theory calculation. Two interlayer shear modes are observed in aa-stacked NL-ReS2 while only one interlayer shear mode appears in a-b-stacked NL-ReS2, suggesting anisotropic-like and isotropic-like stacking orders in aa- and a-b-stacked NL-ReS2, respectively. The frequency of the interlayer shear and breathing modes reveals unexpected strong interlayer coupling in aa- and a-b-NL-ReS2, the force constants of which are 55-90% to those of multilayer MoS2. The observation of strong interlayer coupling and polytypism in multi-layer ReS2 stimulate future studies on the structure, electronic and optical properties of other 2D anisotropic materials

    BuildMapper: A Fully Learnable Framework for Vectorized Building Contour Extraction

    Full text link
    Deep learning based methods have significantly boosted the study of automatic building extraction from remote sensing images. However, delineating vectorized and regular building contours like a human does remains very challenging, due to the difficulty of the methodology, the diversity of building structures, and the imperfect imaging conditions. In this paper, we propose the first end-to-end learnable building contour extraction framework, named BuildMapper, which can directly and efficiently delineate building polygons just as a human does. BuildMapper consists of two main components: 1) a contour initialization module that generates initial building contours; and 2) a contour evolution module that performs both contour vertex deformation and reduction, which removes the need for complex empirical post-processing used in existing methods. In both components, we provide new ideas, including a learnable contour initialization method to replace the empirical methods, dynamic predicted and ground truth vertex pairing for the static vertex correspondence problem, and a lightweight encoder for vertex information extraction and aggregation, which benefit a general contour-based method; and a well-designed vertex classification head for building corner vertices detection, which casts light on direct structured building contour extraction. We also built a suitable large-scale building dataset, the WHU-Mix (vector) building dataset, to benefit the study of contour-based building extraction methods. The extensive experiments conducted on the WHU-Mix (vector) dataset, the WHU dataset, and the CrowdAI dataset verified that BuildMapper can achieve a state-of-the-art performance, with a higher mask average precision (AP) and boundary AP than both segmentation-based and contour-based methods

    A Novel Image Classification Approach for Maize Diseases Recognition

    Get PDF
    Background: The spot, streak and rust are the most common diseases in maize, all of which require effective methods to recognize, diagnose and handle. This paper presents a novel image classification approach to the high accuracy recognition of these maize diseases. Methods: Firstly, the k-means clustering algorithm is deployed in LAB color space to reduce the influence of image noise and irrelevant background, so that the area of maize diseases could be effectively extracted. Then the statistic pattern recognition method and gray level co-occurrence matrix (GLCM) method are jointly used to segment the maize disease leaf images for accurately obtaining their texture, shape and color features. Finally, Support Vector Machine (SVM) classification method is used to identify three diseases. Results: Numerical results clearly demonstrate the feasibility and effectiveness of the proposed method. Conclusion: Our future work will focus on the investigation of how to use the new classification methods in dimensional and large scale data to improve the recognizing performance and how to use other supervised feature selection methods to improve the accuracy further

    Unleashing Cognitive Synergy in Large Language Models: A Task-Solving Agent through Multi-Persona Self-Collaboration

    Full text link
    Human intelligence thrives on the concept of cognitive synergy, where collaboration and information integration among different cognitive processes yield superior outcomes compared to individual cognitive processes in isolation. Although Large Language Models (LLMs) have demonstrated promising performance as general task-solving agents, they still struggle with tasks that require intensive domain knowledge and complex reasoning. In this work, we propose Solo Performance Prompting (SPP), which transforms a single LLM into a cognitive synergist by engaging in multi-turn self-collaboration with multiple personas. A cognitive synergist refers to an intelligent agent that collaborates with multiple minds, combining their individual strengths and knowledge, to enhance problem-solving and overall performance in complex tasks. By dynamically identifying and simulating different personas based on task inputs, SPP unleashes the potential of cognitive synergy in LLMs. We have discovered that assigning multiple, fine-grained personas in LLMs elicits better problem-solving abilities compared to using a single or fixed number of personas. We evaluate SPP on three challenging tasks: Trivia Creative Writing, Codenames Collaborative, and Logic Grid Puzzle, encompassing both knowledge-intensive and reasoning-intensive types. Unlike previous works, such as Chain-of-Thought, that solely enhance the reasoning abilities in LLMs, SPP effectively elicits internal knowledge acquisition abilities, reduces hallucination, and maintains strong reasoning capabilities. Code, data, and prompts can be found at: https://github.com/MikeWangWZHL/Solo-Performance-Prompting.git.Comment: work in progres
    corecore