1,002 research outputs found

    Sources of uncertainties and artefacts in back-projection results

    Get PDF
    Back-projecting high-frequency (HF) waves is a common procedure for imaging rupture processes of large earthquakes (i.e. M_w > 7.0). However, obtained back-projection (BP) results could suffer from large uncertainties since high-frequency seismic waveforms are strongly affected by factors like source depth, focal mechanisms, and the Earth's 3-D velocity structures. So far, these uncertainties have not been thoroughly investigated. Here, we use synthetic tests to investigate the influencing factors for which scenarios with various source and/or velocity set-ups are designed, using either Tohoku-Oki (Japan), Kaikoura (New Zealand), Java/Wharton Basin (Indonesia) as test areas. For the scenarios, we generate either 1-D or 3-D teleseismic synthetic data, which are then back-projected using a representative BP method, MUltiple SIgnal Classification (MUSIC). We also analyse corresponding real cases to verify the synthetic test results. The Tohoku-Oki scenario shows that depth phases of a point source can be back-projected as artefacts at their bounce points on the earth's surface, with these artefacts located far away from the epicentre if earthquakes occur at large depths, which could significantly contaminate BP images of large intermediate-depth earthquakes. The Kaikoura scenario shows that for complicated earthquakes, composed of multiple subevents with varying focal mechanisms, BP tends to image subevents emanating large amplitude coherent waveforms, while missing subevents whose P nodal directions point to the arrays, leading to discrepancies either between BP images from different arrays, or between BP images and other source models. Using the Java event, we investigate the impact of 3-D source-side velocity structures. The 3-D bathymetry together with a water layer can generate strong and long-lasting coda waves, which are mirrored as artefacts far from the true source location. Finally, we use a Wharton Basin outer-rise event to show that the wavefields generated by 3-D near trench structures contain frequency-dependent coda waves, leading to frequency-dependent BP results. In summary, our analyses indicate that depth phases, focal mechanism variations and 3-D source-side structures can affect various aspects of BP results. Thus, we suggest that target-oriented synthetic tests, for example, synthetic tests for subduction earthquakes using more realistic 3-D source-side velocity structures, should be conducted to understand the uncertainties and artefacts before we interpret detailed BP images to infer earthquake rupture kinematics and dynamics

    Response of piles subjected to progressive soil movement

    Get PDF
    Model tests were conducted to investigate the behavior of vertically loaded, free head piles undergoing lateral soil movement using an experimental apparatus developed in house. This paper presents ten new tests on an instrumented model pile in dry sand, which provide the profiles of bending moment, shear force and pile deflection along the pile, the development of maximum bending moment Mmax, maximum shear force Tmax, and pile deflection y0 at the ground surface with soil movement. The tests reveal the effects of axial load P (at pile head), the distance between the tested pile and source of free soil movement Sb, sliding depths, and angle of soil movement (via loading angle) on the pile response. For instance, the axial loading P leads to extra bending moment and deflection in the passive pile; the Mmax reduces with increase in Sb; and the Mmax is proportional to the angle of soil movement. The elastic solution by Guo and Qin [Guo, W. D., Qin, H. Y., 2010, Thrust and Bending Moment of Rigid Piles Subjected to Moving Soil, Can. Geotech. J., Vol. 47, No. 2, pp. 180-196] was used to predict the development of Mmax and Tmax observed in the current tests, a boundary element analysis, and an in situ pile test, respectively. It provides satisfactory predictions for all cases against the measured data

    Sources of uncertainties and artefacts in back-projection results

    Get PDF
    Back-projecting high-frequency (HF) waves is a common procedure for imaging rupture processes of large earthquakes (i.e. M_w > 7.0). However, obtained back-projection (BP) results could suffer from large uncertainties since high-frequency seismic waveforms are strongly affected by factors like source depth, focal mechanisms, and the Earth's 3-D velocity structures. So far, these uncertainties have not been thoroughly investigated. Here, we use synthetic tests to investigate the influencing factors for which scenarios with various source and/or velocity set-ups are designed, using either Tohoku-Oki (Japan), Kaikoura (New Zealand), Java/Wharton Basin (Indonesia) as test areas. For the scenarios, we generate either 1-D or 3-D teleseismic synthetic data, which are then back-projected using a representative BP method, MUltiple SIgnal Classification (MUSIC). We also analyse corresponding real cases to verify the synthetic test results. The Tohoku-Oki scenario shows that depth phases of a point source can be back-projected as artefacts at their bounce points on the earth's surface, with these artefacts located far away from the epicentre if earthquakes occur at large depths, which could significantly contaminate BP images of large intermediate-depth earthquakes. The Kaikoura scenario shows that for complicated earthquakes, composed of multiple subevents with varying focal mechanisms, BP tends to image subevents emanating large amplitude coherent waveforms, while missing subevents whose P nodal directions point to the arrays, leading to discrepancies either between BP images from different arrays, or between BP images and other source models. Using the Java event, we investigate the impact of 3-D source-side velocity structures. The 3-D bathymetry together with a water layer can generate strong and long-lasting coda waves, which are mirrored as artefacts far from the true source location. Finally, we use a Wharton Basin outer-rise event to show that the wavefields generated by 3-D near trench structures contain frequency-dependent coda waves, leading to frequency-dependent BP results. In summary, our analyses indicate that depth phases, focal mechanism variations and 3-D source-side structures can affect various aspects of BP results. Thus, we suggest that target-oriented synthetic tests, for example, synthetic tests for subduction earthquakes using more realistic 3-D source-side velocity structures, should be conducted to understand the uncertainties and artefacts before we interpret detailed BP images to infer earthquake rupture kinematics and dynamics

    An Efficient Method of Detection and Recognition in Remote Sensing Image Based on multi-angle Region of Interests

    Full text link
    Presently, deep learning technology has been widely used in the field of image recognition. However, it mainly aims at the recognition and detection of ordinary pictures and common scenes. As special images, remote sensing images have different shooting angles and shooting methods compared with ordinary ones, which makes remote sensing images play an irreplaceable role in some areas. In this paper, based on a deep convolution neural network for providing multi-level information of images and combines RPN (Region Proposal Network) for generating multi-angle ROIs (Region of Interest), a new model for object detection and recognition in remote sensing images is proposed. In the experiment, it achieves better results than traditional ways, which demonstrate that the model proposed here would have a huge potential application in remote sensing image recognition.Comment: 4 pages, 3 figure

    The effect of conditional EFNB1 deletion in the T cell compartment on T cell development and function

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Eph kinases are the largest family of cell surface receptor tyrosine kinases. The ligands of Ephs, ephrins (EFNs), are also cell surface molecules. Ephs interact with EFNs transmitting signals in both directions, i.e., from Ephs to EFNs and from EFNs to Ephs. EFNB1 is known to be able to co-stimulate T cells <it>in vitro </it>and to modulate thymocyte development in a model of foetal thymus organ culture. To further understand the role of EFNB1 in T cell immunity, we generated T-cell-specific EFNB1 gene knockout mice to assess T cell development and function in these mice.</p> <p>Results</p> <p>The mice were of normal size and cellularity in the thymus and spleen and had normal T cell subpopulations in these organs. The bone marrow progenitors from KO mice and WT control mice repopulated host spleen T cell pool to similar extents. The activation and proliferation of KO T cells was comparable to that of control mice. Naïve KO CD4 cells showed an ability to differentiate into Th1, Th2, Th17 and Treg cells similar to control CD4 cells.</p> <p>Conclusions</p> <p>Our results suggest that the function of EFNB1 in the T cell compartment could be compensated by other members of the EFN family, and that such redundancy safeguards the pivotal roles of EFNB1 in T cell development and function.</p

    Bias detection and correction in RNA-Sequencing data

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>High throughput sequencing technology provides us unprecedented opportunities to study transcriptome dynamics. Compared to microarray-based gene expression profiling, RNA-Seq has many advantages, such as high resolution, low background, and ability to identify novel transcripts. Moreover, for genes with multiple isoforms, expression of each isoform may be estimated from RNA-Seq data. Despite these advantages, recent work revealed that base level read counts from RNA-Seq data may not be randomly distributed and can be affected by local nucleotide composition. It was not clear though how the base level read count bias may affect gene level expression estimates.</p> <p>Results</p> <p>In this paper, by using five published RNA-Seq data sets from different biological sources and with different data preprocessing schemes, we showed that commonly used estimates of gene expression levels from RNA-Seq data, such as reads per kilobase of gene length per million reads (RPKM), are biased in terms of gene length, GC content and dinucleotide frequencies. We directly examined the biases at the gene-level, and proposed a simple generalized-additive-model based approach to correct different sources of biases simultaneously. Compared to previously proposed base level correction methods, our method reduces bias in gene-level expression estimates more effectively.</p> <p>Conclusions</p> <p>Our method identifies and corrects different sources of biases in gene-level expression measures from RNA-Seq data, and provides more accurate estimates of gene expression levels from RNA-Seq. This method should prove useful in meta-analysis of gene expression levels using different platforms or experimental protocols.</p
    corecore