781 research outputs found
An adaptive orthogonal search algorithm for model subset selection and non-linear system identification
A new adaptive orthogonal search (AOS) algorithm is proposed for model subset selection and non-linear system identification. Model structure detection is a key step in any system identification problem. This consists of selecting significant model terms from a redundant dictionary of candidate model terms, and determining the model complexity (model length or model size). The final objective is to produce a parsimonious model that can well capture the inherent dynamics of the underlying system. In the new AOS algorithm, a modified generalized cross-validation criterion, called the adjustable prediction error sum of squares (APRESS), is introduced and incorporated into a forward orthogonal search procedure. The main advantage of the new AOS algorithm is that the mechanism is simple and the implementation is direct and easy, and more importantly it can produce efficient model subsets for most non-linear identification problems
Feature subset selection and ranking for data dimensionality reduction
A new unsupervised forward orthogonal search (FOS) algorithm is introduced for feature selection and ranking. In the new algorithm, features are selected in a stepwise way, one at a time, by estimating the capability of each specified candidate feature subset to represent the overall features in the measurement space. A squared correlation function is employed as the criterion to measure the dependency between features and this makes the new algorithm easy to implement. The forward orthogonalization strategy, which combines good effectiveness with high efficiency, enables the new algorithm to produce efficient feature subsets with a clear physical interpretation
A comparative study on global wavelet and polynomial models for nonlinear regime-switching systems
A comparative study of wavelet and polynomial models for non-linear Regime-Switching (RS) systems is carried out. RS systems, considered in this study, are a class of severely non-linear systems, which exhibit abrupt changes or dramatic breaks in behaviour, due to RS caused by associated events. Both wavelet and polynomial models are used to describe discontinuous dynamical systems, where it is assumed that no a priori information about the inherent model structure and the relative regime switches of the underlying dynamics is known, but only observed input-output data are available. An Orthogonal Least Squares (OLS) algorithm interfered with by an Error Reduction Ratio (ERR) index and regularised by an Approximate Minimum Description Length (AMDL) criterion, is used to construct parsimonious wavelet and polynomial models. The performance of the resultant wavelet models is compared with that of the relative polynomial models, by inspecting the predictive capability of the associated representations. It is shown from numerical results that wavelet models are superior to polynomial models, in respect of generalisation properties, for describing severely non-linear RS systems
Improved model identification for nonlinear systems using a random subsampling and multifold modelling (RSMM) approach
In nonlinear system identification, the available observed data are conventionally partitioned into two parts: the training data that are used for model identification and the test data that are used for model performance testing. This sort of ‘hold-out’ or ‘split-sample’ data partitioning
method is convenient and the associated model identification procedure is in general easy to implement. The resultant model obtained from such a once-partitioned single training dataset, however, may occasionally lack robustness and generalisation to represent future unseen data, because the performance of the identified model may be highly dependent on how the data partition is made. To
overcome the drawback of the hold-out data partitioning method, this study presents a new random subsampling and multifold modelling (RSMM) approach to produce less biased or preferably unbiased models. The basic idea and the associated procedure are as follows. Firstly, generate K training datasets (and also K validation datasets), using a K-fold random subsampling method. Secondly, detect
significant model terms and identify a common model structure that fits all the K datasets using a new
proposed common model selection approach, called the multiple orthogonal search algorithm. Finally,
estimate and refine the model parameters for the identified common-structured model using a multifold parameter estimation method. The proposed method can produce robust models with better generalisation performance
Sparse model identification using a forward orthogonal regression algorithm aided by mutual information
A sparse representation, with satisfactory approximation accuracy,
is usually desirable in any nonlinear system identification and signal
processing problem. A new forward orthogonal regression algorithm, with
mutual information interference, is proposed for sparse model selection and
parameter estimation. The new algorithm can be used to construct parsimonious
linear-in-the-parameters models
A new class of wavelet networks for nonlinear system identification
A new class of wavelet networks (WNs) is proposed for nonlinear system identification. In the new networks, the model structure for a high-dimensional system is chosen to be a superimposition of a number of functions with fewer variables. By expanding each function using truncated wavelet decompositions, the multivariate nonlinear networks can be converted into linear-in-the-parameter regressions, which can be solved using least-squares type methods. An efficient model term selection approach based upon a forward orthogonal least squares (OLS) algorithm and the error reduction ratio (ERR) is applied to solve the linear-in-the-parameters problem in the present study. The main advantage of the new WN is that it exploits the attractive features of multiscale wavelet decompositions and the capability of traditional neural networks. By adopting the analysis of variance (ANOVA) expansion, WNs can now handle nonlinear identification problems in high dimensions
An efficient nonlinear cardinal B-spline model for high tide forecasts at the Venice Lagoon
An efficient class of nonlinear models, constructed using cardinal B-spline (CBS) basis functions, are proposed for high tide forecasts at the Venice lagoon. Accurate short term predictions of high tides in the lagoon can easily be calculated using the proposed CBS models
Singularity and similarity detection for signals using the wavelet transform
The wavelet transform and related techniques are used to analyze singular and fractal signals. The normalized wavelet scalogram is introduced to detect singularities including jumps, cusps and other sharply changing points. The wavelet auto-covariance is applied to estimate the self-similarity exponent for statistical self-affine signals
Model structure selection using an integrated forward orthogonal search algorithm assisted by squared correlation and mutual information
Model structure selection plays a key role in non-linear system identification. The first step in non-linear system identification is to determine which model terms should be included in the model. Once significant model terms have been determined, a model selection criterion can then be applied to select a suitable model subset. The well known Orthogonal Least Squares (OLS) type algorithms are one of the most efficient and commonly used techniques for model structure selection. However, it has been observed that the OLS type algorithms may occasionally select incorrect model terms or yield a redundant model subset in the presence of particular noise structures or input signals. A very efficient Integrated Forward Orthogonal Search (IFOS) algorithm, which is assisted by the squared correlation and mutual information, and which incorporates a Generalised Cross-Validation (GCV) criterion and hypothesis tests, is introduced to overcome these limitations in model structure selection
Feature subset selection and ranking for data dimensionality reduction
A new unsupervised forward orthogonal search (FOS) algorithm is introduced for feature selection and ranking. In the new algorithm, features are selected in a stepwise way, one at a time, by estimating the capability of each specified candidate feature subset to represent the overall features in the measurement space. A squared correlation function is employed as the criterion to measure the dependency between features and this makes the new algorithm easy to implement. The forward orthogonalization strategy, which combines good effectiveness with high efficiency, enables the new algorithm to produce efficient feature subsets with a clear physical interpretation
- …